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INTRODUCTION

Imaging spectrometers have considerable potential for urban applications. In this chapter we discuss how
imaging spectrometry has been used for urban applications and provide an overview of instrumentation,
sampling, spectroscopy, and analysis with afocus on urban materials. Case studies are presented for Santa
Barbara California, in which we evaluate optimal wavelengths for urban mapping, and the World Trade
Center, where imaging spectrometry was used to map environmental contaminants rapidly in response to
the disaster.

Thereisagrowing interest in the use of remote sensing in urban environments. Urban environments
represent only asmall percentage of land area, but they have becomeincreasingly populated as greater
numbers of individuals migrate from rural areasto cities, towns and suburbs. Globally, thistrend has
resulted in an increase in the urban population from approximately 2% in 1800 to estimates of over 50% by
the turn of this century (Ben-Dor, 2001). Urban environments also have a growing impact on adjacent lands
as sources of urban expansion into agricultural lands and native vegetation, sources of airborne and
waterborne pollution, and net consumers of energy and resources (McNeill, 2000). Thereisagrowing need
for improved maps of urban surface materials, such as roof types for energy conservation and fire danger
assessment (Woycheeseet al. 1997; Medina, 2000), and impervious surfaces for improved estimation of
flood potential and urban source pollution (Schueler, 1994; Ridd, 1995). The dynamic nature of urban
environments necessitates technol ogies that are rapid, repeatable and provide large areal coverage at a
reasonable cost, making remote sensing one of the most viable technologies.

Until recently, most analysisin urban areas has relied upon aerial photography as a data source. Urban
environments are especially challenging because urban objects typically have asmall spatial extent, making
aerial photography well suited to these areas. Recent advancesin spaceborne systems, such as IKONOS
(www.spaceimaging.com) and Quickbird (www.digitalglobe.com) provide cost effective alternatives to
aeria photography. For example, IKONOS provides 1 m panchromatic and 4 m multispectral data, thereby
meeting the minimum spatial resolution of 5 m considered necessary for accurate spatial representation of
urban materials such as buildings and roads (Woodcock and Strahler, 1987; Jensen and Cowen, 1999).
Quickbird provides even finer spatial resolution, providing 0.61 m panchromatic and 2.44 m multispectral
data. However, multispectral and panchromatic systems such as IKONOS do not provide sufficient spectra
information (i.e. necessary wavelengths or enough bands sampled) needed to discriminate many urban
materials (Herold et al. 2003). For example senesced (dead) grass and wood shingle can be definitively
separated from bare soil, road surfaces and norwooden roofs based on the expression of ligno-cellulose
bands in the short-waveinfrared (SWIR), yet these wavel engths are not sampled by either of these sensors.

Imaging spectrometers have sufficiently fine enough spectral sampling and sample enough wavelengths to
address many of the weaknesses inherent in multispectral systems. Imaging spectrometers, such asthe
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS, Table 1), consist of alarge number of spectrally
contiguous bands (Green et al. 1998). Theintensity of electromagnetic radiation reflected by the surface at
different wavelengths depends on the source function (the sun); the physical structure of the surface; the
chemical constituents present; and the extent to which radiance is modified by the atmosphere (Schott,
1997). Imaging spectrometers, by sampling alarge number of wavelengths, make it possible to better
define each of these components, thereby improving the quality of retrieved surface reflectance and
identifying the chemical and physical properties of materials within the field of view of the instrument
(Green et al. 1998). Because many urban materials have unique chemical constituents, this offersthe
potential of improved mapping of urban land-cover through direct mapping of urban chemistry.




Table 1: Selection of airborne imaging spectrometers used in urban remote sensing and description of some
key attributes. Sensors listed include AVIRIS (Airborne Visible Infrared Imaging Spectrometer, CAS|
(Compact Airborne Spectrographic Imager, DAIS7915 (Digital Airborne Imaging Spectrometer) HY DICE
(Hyperspectra Digital Imagery Collection Experiment, HyMAP and MIVIS (Multispectral Infrared and
Visible Imaging Spectrometer). Sourcesfor AVIRIS, CAS| and HYDICE include Green et al. (1998) and
Kruse (1999). Information for the DAIS7915 can be located at http://www.op.dIr.de/dais/dais scr.htm.
Information on HyM AP was determined from http://www.intspec.com/Products/HyM apProd.htm.

10nm(nom)
AVIRIS 370-2500 nm 32 deg lmr (20m/20km) 12 bit
(224 bands) (9.8nm samp) (4m/4km)
CAS| 400-1000nm 2.2nm 37.8deg  [1.25mr (0.5m/0.4km) [12 bit
(19 to 288 bands) |(1.9m samp) (10m/8km)
DAIS7915  |450-2450nm 400-1000nm 51.2deg  [3.3nmr (5m/1.5km) 15 hit
(72 bands) (15-30 nm, 32) (20m/6km)
7 therma 1500-1800nm
(45nm, 8)
2000-2500nm
(20nm, 32)
HYDICE 400-2500nm 10nm (nom) 8.9deg  [0.5mr (1m/2km) 12bit
(210 bands) (4m/8km)
HyMAP 450-2500nm 1522 nm 30-65deg [1-3mr (1.5m/1.5km) [12-16hit
(126 bands) (VNIR 15-17nm) (13.5m/4.5km)
(SWIR 17-22nm)
MIVIS 430-830nm 20 nm 71 deg 2 mr (5m/2.5km) 12 bit
(20 bands)
1150-1550 nm 50 nm
(8 bands)
1985-2479 nm 8 nm
(64 bands)
10 thermal

A number of researchers have begun to exploit the fine spectral structure of imaging spectrometry to map
urban materials. Bianchi et al. (1996) used Multispectral Infrared and Visible Imaging Spectrometer
(MIVIS) datato differentiate paving materialsin Rome, Italy. Hepner et al. (1998) and Gambaand
Houshmand (2001) used a combination of AVIRIS and | nterferometric Synthetic Aperture Radar (IFSAR)
to produce improved maps of three-dimensional urban structure in Los Angeles, California, USA. A similar
study is described by McKeown et al. (1999), who used data acquired over Fort Hood, Texas, USA by the
Hyperspectral Digital Imagery Collection Experiment (HY DICE; Table 1) to classify urban and natural

materials and merged this map with stereo panchromatic imagery to map the three-dimensional structure of
buildings. Ben-Dor et al. (2001) used a combination of an existing spectral library developed by Price




(1995) and Compact Airborne Spectral Imager (CASI; Table 1) data acquired over Tel Aviv, Isradl, to
develop an urban spectral library. They compared spectra of common urban materials, then used a subset of
thelibrary and a Mixture Tuned Matched Filter (MTMF: Boardman et al. 1995) to map materials within
the CASI scene. In areview chapter on urban imaging spectrometry, Ben-Dor (2001) extended thiswork to
include analysis of field spectra acquired using afull range Analytical Spectral Devices (ASD)
spectrometer, noting that many urban materials sampled had unique “ spectral fingerprints’ associated with
specific minerals within the materials. Roessner et al. (2001) used data acquired by the Digital Airborne
Imaging Spectrometer (DAIS 7915; Table 1) to map urban materialsin the city of Dresden, Germany. In
this study, the authors used a maximum likelihood classifier (a classification procedure that assignsa
spectrum to a specific class based on the probability that it isamember of that class) to produce amap of
“pure”’ spectral endmembers, then used these spectrato seed anew algorithm that unmixed neighboring
spectra as linear combinations of seed spectra. Heiden et al. (2001) used HyMap (Table 1) to produce a
hierarchical thematic classification (see urban concepts below) of urban land cover types and materials and
provided preliminary spectroscopic analysis of those targets. Herold et al. (2003) evaluated optimal
wavelengths for mapping urban materials using AVIRIS data acquired over Santa Barbara, CA using the
Bhattacharyya distance (Jimenez and Landgrebe, 1999) as a spectral separability metric. They compared
AVIRISto AVIRIS-simulated IKONOS and Landsat Thematic Mapper (TM) datato evauate differences
in map accuracy due to spectral sampling, finding that AVIRIS produced the highest map accuracies for
many materials, most notably roofs. Recently, Clark et al. (2001) demonstrated the potential of animaging
spectrometer for disaster response. In this study, the authors used high spatia resolution AVIRIS data
acquired over the World Trade Center to map thermal sources, asbestiform minerals and dust and debris
from the collapse, producing maps of environmental contaminants that are difficult to produce cost
effectively in any other way.

Whereas current spaceborne systems, such as Hyperion on EO-1 (Ungar et al. 2003) lack sufficiently
small-scale (fine) spatia resolution for most urban applications, initial studieswith airborne systems
provide a glimpse of the potential power of combining fine spatial resolution with fine spectral sampling.
Theincreasing availability of airborne imaging spectrometer data, and potential for finer spatial resolution
spaceborne datain the future suggest that this technology will continue to grow in importance. Inthis
chapter we provide an overview of some of the techniques used to measure spectra of urban materials,
discuss unique spectral properties of these materials, spectral analysis technigques commonly employed and
conclude with some examples from our own work.

IMPORTANT CONCEPTS

Radiometry, imaging and imaging geometry

Imaging spectrometers measure el ectromagnetic radiation reflected or emitted from the atmosphere or
surfaces. A mgjority of imaging spectrometers deployed for terrestrial applications sample reflected and
emitted wavel ength ranges from the ultra-violet (UV) to the Near- Infrared (NIR), covering a spectral range
from 350 to 2500 nm. In this chapter, we will focus on thevisible near IR (VNIR, or 400-1000 nm;
Chapter 1) and the short wave infrared (SWIR, 1000-2500 nm; Chapter 1), which is part of the near-IR
(NIR). The most common energy source for radiation in the visible and NIR is the sun, athough active
sensors such as Light Detection and Ranging (LIDAR) also operate in this spectral region. The NIR
infrared radiation is generally detected by silicon-based detectors and the SWIR radiation is detected by
indium antimonide (InSb) or lead sulfide (PbS) detectors (e.g., Schott, 1997; Chapter 2).




The most useful way of reporting spectra valuesisin units of reflectance. Reflectance can be defined as
the ratio of the measured radiance from an object divided by the radiance reflected by a near-perfect
reflector (e.g., pressed halon). In this manner, reflectance spectra are standardized and thus the spectrum of
an unknown material can be compared to a known material while removing other factors that modify
reflected radiation, such asthe light source, illumination geometry or effects of external energy sources
such as scattered radiation. Reflectance can be expressed in avariety of ways depending upon the nature
and geometry of the incoming and reflected radiation and the type of spectrometer. Thetwo most common
types of reflectance used in remote sensing include directional -hemispherical reflectance and bi-directional
reflectance. Directional -hemispherical reflectance istypically measured in the laboratory using a collimated
beam as the directional source, and an integrating sphere to capture reflected radiation at al possible view
geometries. Bidirectional reflectance istypically measured in the field or by most imaging spectrometers.
In this case, incident energy and reflected energy are measured from a specific set of incident and view
angles. A common geometry used in thefield, for example, isto orient the sensor normal to the surface
(nadir viewing), with the sun positioned at a specific zenith and azimuth angle depending on geographic
location, time of day and date. In this chapter, al spectra are bi-directiona with units of reflectance.

Remote sensing systems do not measure reflectance. Rather, they provide some measure of the amount of
radiation reflected by an object, which varies depending upon the sensitivity of the instrument, wavelengths
sampled, lighting geometry and atmospheric conditions. The remote sensing signal also depends on the
quantization of the recorded signal. Quantization describes the number of bits used to store a number. For
example; 8 bit quantization stores 256 values, and 12 bit stores 4096. Different remote sensing platforms
have different inherent quantization (Table 1).

Raw data values from an instrument are typically called Digital Numbers (DNs). Reflectance can be
derived from DNs provided that light reflected by an object is standardized to light reflected off of a
material of known reflectance under similar lighting conditions. A common field standard is Spectralon
(Labsphere, New Hampshire), consisting of pressed halon powder. For laboratory or field instruments, the
process of converting DNs to reflectance can either be performed automatically by the instrument once a
reflectance standard is acquired, or calculated later from DNs. The same process, however, cannot be as
easily implemented using imaging spectrometry data. In this case, akey intermediate step is the process of
radiometric calibration, in which DNs recorded by the instrument, are converted to units of spectral
radiance, L, through a series of wavelength dependent instrumental gains and offsets (L, =

Gain*DN, +offset;). Instrumental gains and offsets are typically established in the laboratory using a
calibrated light source and integrating sphere (prelaunch or preflight gains and offsets). However,
instrumental performance can also be monitored in flight using on-board light sources and the instrumental
gains and offsets can be adjusted after aflight has occurred using ground targets (e.g. Green and Pavri,
2002).

Units of spectral radiance vary considerably between sensors (e.g., Table 1). For example, typica units
reported by AVIRIS are uyWemi?nm*sr™. The process of radiometric calibration is particularly important in
the field of imaging spectrometry, because it is afundamental requirement for atmospheric correction and
reflectance retrieval.

Other important components of calibration include spectra calibration, reporting the band center and
spectral response for each detector. The spectral response for most imaging spectrometersis considered to
have a Gaussian shape, and istypically described by the Full-Width-Half-Maximum of the band (FWHM:




equal to the spectral width of the response function at half the peak response; Fig. 1). The AVIRIS sensor,
for example, hasanomina FWHM of 10 nm and spectral calibration of 0.5 nm or better with an absolute
radiometric calibration of 96% averaged across the spectrum (Green et al. 2002). The FWHM of a system
iscommonly referred to as its spectral resolution. However, spectral resolution is more properly defined as
the minimum spectral separation required to discriminate two spectral features, and thus can be less than or
greater than the FWHM. For example, the kaolinite doublet is clearly discernable with a FWHM of 20 nm
or finer, but isno longer evident at a FWHM of 50 or 100 nm (Fig. 1b). Spectral resolution (the ability to
resolve a spectral feature) will depend on the FWHM, wavelength location of band centers and sampling
interval (Fig. 1; Swayze et al., 2003)
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Figure 1) (a) Plot showing the FVHM and band centers for 10 wavel engths sampled between 2190 and
2280 nm with a 10 nm FWHM. (b) illustrates the impact of FWHM on spectral resolution. In this example,
the kaolinite doublet is evident at a FWVHM of 10 and 20 nm, but is not evident at a FWHM of 50 and 100

nm.

Severa important aspects of imaging also must be taken into consideraion. Imaging spectrometers differ
from laboratory or field-based spectrometersin that they create an image of spectra. Important spatial



components of an imaging spectrometer include theField of View (FOV, or cross-track width; Fig. 2) and
the Instantaneous Field of View (IFOV). The FOV describes the angular width imaged by the sensor in the
crosstrack direction and istypically reported in degrees or kilometers (Fig. 2). For example, AVIRIS when
deployed on the ER-2 measures 614 cross track elements, equal to a 32 degree FOV and anomina swath
width of 11 km (Green et al. 1998). Cross-track spectra are most typically acquired using two imaging
strategies, pushbroom systems and whiskbroom systems. In a pushbroom system, each cross-track element
issampled by adifferent set of detectors, thus reducing the need for moving parts and increasing thetime a
set of detectors can image the same piece of ground. In awhiskbroom sensor, each cross track element is
sampled by the same set of detectors which imagedifferent portions of the FOV through the use of
scanning foreoptics or rotating mirrors. Whiskbroom sensors are easier to radiometrically calibrate than
pushbroom sensors, but also require more moving parts and have less time to image the same area (thus
potentially impacting SNR). A common artifact in pushbroom sensorsis vertical striping in images, due to
crosstrack differencesin the radiometric calibration of detectors. Examples of pushbroom systemsinclude
CASl and HYDICE while AVIRIS, HYMAP and the DAIS7915 are whiskbroom systems (Table 1).
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Figure 2) (a) Typical imaging geometry including the sensor, FOV, IFOV, GIFOV, across track and along
track sampling. (b) Typica illumination geometry, showing the solar zenith, ? 3, and view zenith, ? , as
they vary across the image from aforward scattering (3), to nadir (2) and backscattering (1) geometry. Tall
buildings will be darkest in the forward scattering view direction because the sensor isimaging shadows
cast by the buildings.



The IFOV describes the angle subtended by a single detector element and istypically reported in
milliradians. When the IFOV is multiplied by sensor height, thisis called the Ground Instantaneous Field
of View (GIFQV; Fig. 2). The IFOV of AVIRISis 1 milliradian, producing a GIFOV of 20 m from a
height of 20 km. For urban remote sensing probably the most important sensor attribute to consider isthe
GIFOV. Asistrue for spectral resolution, spatial resolution is commonly used synonymously with the
GIFQV, but is more properly defined as the minimum distance between two objects required to
discriminate them. As such, spatial resolution varies depending upon atmospheric conditions and the
contrast between two objects on the ground.

Special consideration must be given to the interplay between the bidirectional reflectance of a surface, and
imaging and illumination geometry (Fig. 2b). The manner in which reflectance of an object varies
depending on solar and view zenith can be described as afunction called the Bidirectional Reflectance
Didtribution Function (BRDF; Schott, 1997). Surfaces can be categorized asLambertian (scatters equally in
al directions), backscattering (preferentially scatters light back to the source), forward scattering
(preferentialy scatters light away from the source), specular (mirror) or some combination of these, Most
rough surfaces, such as shrubs, trees and buildings, backscatter radiation, whereas smooth surfaces like
water reflect radiation in a specular manner. Dry beach sands and sidewal ks scatter radiation in anear
Lambertian manner. Depending on the orientation of aflight line and the solar azimuth, one flank of the
imaging swath may represent either aforward or backscattering view geometry. This becomes important
because viewing geometry can modify the overall brightness and spectral properties of a surface. For
example, the lighting geometry shown in Figure 2b will result in astrong gradient from theright to left,
with the lowest radiance in the forward scattering view (where the sensor isimaging shadows cast by
buildings) and highest radiance in the backscattering view (where the shadows are partly blocked by the
buildings). The BRDF of some materials varies spectrally. For example, vegetation is a backscatterer in the
visible part of the spectrum, but more lambertian in the NIR (Deering, 1989). The spectral dependence of
the BRDF for most urban materialsis poorly known.

Viewing geometry can be particularly problematic when mosaicking overlapping flight lines. The most
ideal flight geometry isto have the aircraft flying either towards or away from the sun, because this gives
each side of the swath the same viewing geometry. However, thisideal is not always achievable. For
example, in our own work in Santa Barbara, California, USA, the east-west orientation of the Santa'Y nez
range forces east-west flights. As aresult, two mosaicked east-west AVIRIS flights can produce differences
of up to 32 degreesin view zenith in the overlap region.

Urban terminology

Additional important concepts include the nature of applicationsin urban areas. Common terminology in
urban remote sensing distinguishes between land-cover (the material composition) and land-use (how the
land is used). Remote sensing alows us to map land-cover, but only infer land-use. Land-cover categories
aretypically placed in ahierarchical classification scheme developed by Anderson et al. (1976), in which
broad land-cover classes are considered Level 1 and only require relative coarse spatial resolutions (20-100
m). Level 4 requires sub-meter resolution, and involves very detailed use information (Jensen and Cowen,
1999). As an example, the designation urban, or “built-up” refersto an Anderson Level 1 class, subdivision
between residential and commercia uses would be Level 2, adistinction between single and multifamily
residential would occur at Level 3 and Level 4 might entail separating retail from office use for a
commercial class. The hierarchical scheme developed by Anderson et al (1996) is commonly modified to
suit the needs of an application. Herold et al. (2003) adhered to Anderson Levels 1 and 2 in their study, but



modified Level 3 to include materias (i.e., wood shingle versus composite shingle) and Level 4 asa
subdivision within atype of materia (i.e., black composite shingle).

Another powerful classification scheme proposed for urban areasisthe VIS mode (Vegetation-Impervious
Surface-Soil; Ridd, 1995), in which roofs and road surfaces would be categorized asimpervious surfaces,
whereas an open lot or park might be vegetation or bare soil. Imaging spectrometry hasits greatest
potential inidentifying materials (Level 3 or 4) and improving separation at Level 2.

EQUIPMENT AND SAMPLING

Overview

The quality of spectral datais highly dependent upon the quality of the instrumentation. Important
considerations when eva uating an instrument include spatial, spectral, and stability concerns. Spatial
considerations include GIFOV as discussed previously. Spectral considerationsinclude the wavelength
range sampled, number of wavel engths sampled within this range and the FAVHM (Table 1). Additional
considerationsinclude the stability of spectral calibration and potential of artifacts, such assecond-order
contamination or out of band transmission, both of which entail measuring radiation from outside of the
wavelength region of interest. For example, the use of agrating to disperse light can lead to second-order
contamination, whereas the FWHM produced by a prism can vary as afunction of the wavelength sasmpled
(adlit can be used to compensate for wider dispersion). Many of these factors vary depending upon the
method of light dispersal and the arrangement of detector arrays within the instrument. Precise knowledge
of the spectral properties of an instrument i scritical if spectraare to be convolved to avariety of sensors
with differing spectral response functions.

Radiometric considerations include radiometric stability, quantization and signal to noiseratio (SNR:
alternatively instrumental noise can be expressed as aNoise Equivalent Delta Radiance, or NEDL). An

ideal instrument is radiometrically stable, and has sufficiently high enough SNR, and quantization to
discriminate two materials based on subtle differences in reflectance (Swayzeet al., 2003). AVIRIS, for
example, uses 12 bit quantization and had a SNR that exceeded 1000:1 in the visible, and approached 500:1
at 2200 nmin 2001 (Green et al. 2002).

I nstrumentation

Spectraare typically acquired at three scales, in the laboratory from destructive samples (i.e., leaves
harvested in the field and brought into the laboratory), in the field (termed in-situ by Ben-Dor, 2001) or
from an imaging platform. Because |aboratory-based instruments have been covered in detail in other
chapters, little will be said here. Typically laboratory based measurements are made over afairly small
sample, with afield of view on the order of 0.01-2 cm?. As stated previously, |aboratory-based instruments
typically measure directional -hemispherical reflectance. These instruments have the advantage of providing
controlled conditions and the highest quality reflectance, but also require the transport of surfacesinto the
laboratory environment. In many cases, thisisinfeasible.

A number of high quality field instruments are available. In our own research, we have used the Spectron
SE590, ASD Personal Spectrometer |1, GER Field Spectrometer Mark 1V, and ASD full range instrument.
In addition to considerations of instrumental performance, other factors become important in thefield, such
asthe weight of the instrument, its durability, scan time, software and number of documented artifacts. In
this chapter, al of the field-based spectrawere acquired using an ASD full range instrument. This
instrument sampl es between approximately 350 and 2500 nm at a spectral sampling interva of 1.4 nmin



the VNIR with a FWHM of 3-4 nm and interval of 2.2 nmin the SWIR with a 10-12 nm FWHM. Spectra
can be collected over arange of IFOVs, controlled by the foreoptics (a device that restrictsthe IFOV),
which range from 1 (highly restricted) to 25 degrees (no foreoptics). Output spectraare resampledtoal
nm interval. Scan times are typically rapid, allowing spectral averaging of 10 or more spectrain afew
seconds. Spectraare sampled using a grating, a silicon-based detector array for 350-1000 nm and two
INnGaAs SWIR detectors that sample from 1000 to 2500 nm (http://www.asdi.com). The SNR of the
instrument varies depending on the illumination source and wavelength sampled, with the lowest SNR
found within strong water vapor absorption regions (1400 and 1900 nm), at the longest wavel engths (2500
nm) and at the transition zone between the VNIR and SWIR1 detectors at 1000 nm. A contact probeis aso
available for small samples, which avoids the need of solar illumination through an internal light source.
Although models vary, the instrument is generally portable with high performance.

Sampling strategy

A key consideration in the field is sampling strategy. Sampling choicesinclude the choice of foreoptics,
height above the target, frequency that spectra are standardized, time of day, acceptable atmospheric
conditions and number of samplesfor each target. Ideally spectra should be acquired when the solar zenith
islowest, typically within +/- 2 hours of solar noon under clear sky conditions, although the range of
acceptable timeswill depend on latitude, time of year and the frequency at which standards are measured.
For example, in Santa Barbara (34N latitude), if standards are acquired every five minutes, acceptable
spectra can be acquired within +/-3 hours of solar noon in July, but only within +/- 1.5 hours of solar noon
in January (this assumes a 5% change in radiance measured between standardsis acceptable). At higher
latitudes, the acceptable range will be far shorter during the winter, but may be greater during the summer.
Reflectance standards should also be acquired under the same illumination conditions as the surface to
avoid the impact of side scattered light. For example, if atarget is measured in close proximity to atree, but
the standard is measured away from the tree, the lighting environment of the target will include higher
levels of NIR than the standard, thus producing an anomal ous spectrum (side scattered radiation isaso
called the adjacency effect). Adjacency effectswill be most significant in rough urban environments.

In urban environments sampling strategies can be complicated. The simplest sampling problem involves
horizontal surfaces, such asroads, parking lots, sidewaks or lawns. In thisinstance, the height of the
instrument and number of measurements required will depend on the variability of the surface and the
objectives of the measurements. For example, arelatively uniform, newly surfaced parking lot may require
very few measurementsto capture its spectrum. In contrast, if the objective isto quantify very fine scale
variability, such asthe impact of cracks on aroad surface, many measurements may be required with the
instrument positioned close to the surface (afew tens of cm). In our case, we typically sample road surfaces
along transects at afixed interval with the instrument positioned one meter above the surface. Transects
rangein length from less than 20 m to up to 100 m depending on the extent of the surface. Standards are
acquired approximately every five minutesto avoid major changesin lighting between measurements.
Because considerable variation exists in roads due to aging, building material and wear, a comprehensive
library requires representatives from each of these categories.

Vertical structures and non-horizontal surfaces, which are common in urban environments, provide
considerably greater challenges. For example, to sample roof spectrathe instrument may haveto be
transported to the roof. Instrument height will vary depending upon the degree of purity desired. If the
objective isto sample one shingle, the height and foreoptic must be selected to restrict thefield of view to
the small illuminated portion of the shingle. If the objective isto capture multiple shingles, or shadows cast
by ashingle, alarger foreoptic or higher sensor height must be selected. To capture variability within a
single roof, multiple spectramay be required on the same roof aspect, or spectramay be required on
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different aspects on the same roof. In our own work, spectrawere typically acquired from multiple shingles
on at least four different roof aspects. Because of the non-lambertian behavior of most of these structures,
reflectance will vary throughout the day, even if the aspect is constant. Vertical surfaces, such as plants add
additional complications, such as variable heights of surfaces and considerable variation in shadowing, leaf
orientations, branches etc. In order to characterize this variability, we typically sample multiple spectra
within asingle plant, and multiple plants within a species (Robertset al . 2003).

Figure 3 illustrates atypical example of collecting spectra of urban materials using afield spectrometer. In
this example, aresearcher is collecting spectraof aconcrete surface located within aparking lot in Goleta,
Cdiforniain late May, 2001. Spectrawere sampled along atransect at fixed intervals of afew meters. At
each interval five replicates were collected, each replicate consisting of the average of 10 spectra measured
by the instrument. Spectrawere originally collected in raw DN mode, standardized with a Spectralon panel
(acquired at the start and end of the transect), then later processed to reflectance.

Field Spectra Collection
ASD Full-Range Spectrometer

Sample Concrete Spectra

50%)

—ppesmm.001-

——ppcsmm.002-
ppcsmm.003-
ppcsmm.004-

——ppcsmm.005-

——ppcsmm.006-

Reflectance (0.5

—_— I 1
FOV 350 850 1350 1850 2350
- Wavelength (nm)

Figure 3) A researcher collecting spectra of a concrete surface located in a parking lot west of Fairview,
Goleta California. Spectra measured along atransect over the surface are shown to theright.

If possible, photographs should be acquired and detailed metadata recorded for as many spectraasis
feasible (Fig. 4). Metadata recorded for most of our urban spectraincluded CCD images of surfaces, GPS
location, ashort description of the material, time of day, a quality assessment of spectra and any additional
descriptive terms such as age of surface, heterogeneity, surface quality etc (Fig. 4). In this manner, detailed
variation within the FOV of the instrument and specific surface properties are described photographicaly,
while other important descriptiveinformation is also recorded.
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Figure 4) Typical metadata and digital images collected during the development of the Santa Barbara urban
spectral library.

L ow-flying airborne platforms offer the potentia of acquiring alarge number of spectra over many targets
invery littletime. Ben-Dor et al. (2001) and Herold et al. (2003) describe strategiesin which high-
resolution imaging spectrometry data were used to build a spectral library of urban materials. A growing
number of imaging spectrometers are available that provide sufficiently fine spatial resolution to build a
spectral library and map urban materials (Table 1). In thistable, we focus only on imaging spectrometers
that have recently been used to map urban areas. Key attributes listed in thetable include the wavelength
range, number of bands, FWHM, FOV, IFOV, GIFOV and quantization. We report nominal values of
FWHM and, where it is reported, average spectral sampling intervals (in nm). The FOV, IFOV, FWHM
and wavelengths ranges are typically fixed by the spectrometer. In contrast, GIFOV varies considerably
depending on aircraft height, ranging from afine GIFOV of 0.5 m, sampled by CASI deployed on a
helicopter, to 20 m for DAIS7915 deployed at an atitude of 6 km. In some instances, instruments are
programmable. CASI, for example, can be programmed in mapping mode, providing 19 bands for a cross
track image of 512 elements, or spectral mode in which 288 bands are sampled at fixed spacings across the
swath. Most urban studies using imaging spectrometers have utilized low dtitude platforms (e.g., Mckeown
et al. 1999; Ben-Dor et al. 2001; Roessner et al. 2001; Herold et al. 2003) and GIFOVson the order of 4 m
or less. The FWHM and spectral sampling are also potentially important. Although few studies have

eva uated the importance of spectral information for urban areas (see Herold et al. 2003 for an exception),
material specific vibrational absorptionsin the SWIR suggest that sensors such as CASI, which lack these
wavelengths, may have difficulty in discriminating certain types of materials. However, many unique urban
spectral features are still present in the visible portions of the spectrum (Ben-Dor, 2001; Herold et al. 2003;
Swayze et al. 2003;) suggesting that imaging spectrometers that do not sample the SWIR, are till likely to
be able to map alarge diversity of materiasin these environments. A more detailed review of most of the
sensors and several more is provided by Kruse (1999).

12



Key considerations when using imaging spectrometry datainclude time of acquisition, orientation of the
flight, atmospheric conditions, GIFOV and quality of georeferencing. As stated previoudly, flight
orientation can also be critical. Flightsthat parallel the solar azimuth are preferred over flights that are
perpendicular to the azimuth. When possible, field spectra should be acquired either close to the time of
acquisition, or from temporally invariant targets for use in reflectance retrieval (Clark et al., 2002).

IDENTIFICATION OF PEAKS AND/OR QUALITATIVE ANALYSISAND/OR
SPECTRAL MATCHING TECHNIQUES

The spectra of urban materials are dominated by the same electronic and vibrational absorption processes
that create the spectra of plants and minerals. However, because of the way urban materials are altered by
manufacturing processes and the way they are combined, it is not aways easy to identify a specific
absorption feature, and relateit to a diagnostic absorption process. Furthermore, man-made materials
generate additional chemical absorptions which are not readily found in natural materials. A good example
is paint, which has no analog in the natural world. Finally, urban spectra are further modified by processes
that alter the original material. For example, road surfaces and roofs change with aging, leading to changes
in their spectra. Urban materials can aso be atered by coatings such as agae, dirt, dust or rubber tire marks
found on roads, bridges and road paints. Remote sensing images of urban areas commonly contain pixels
that represent a mixed spectral signature.

The same genera principles developed for mineral spectroscopy can be applied the interpretation of urban
spectra. Electronic absorption processes are typically high energy, involving the transition of an electron
from one valence stateto another, or to a non-va ence state such as a conduction band (Clark, 1999). The
high energy of these interactions typically resultsin strong absorptionsin the UV, visible and shorter
wavelength portions of the SWIR. Typical band shapes are broad, such as chlorophyll bands centered at
450 and 680 nm or iron-oxide absorptions, centered at 880 nm. The former are due to conjugate bandsin
the chlorophyll molecule, and the latter are dueto crystal field absorptionsin iron-oxides (e.g., Clark,
1999).

Vibrational bands represent lower energy absorptions occurring when the energy of photons matches the
frequency of vibration of molecular bonds (Q=hn, where Q isradiant energy, in Joules, his Planck’s
constant, and n is frequency). Examples of molecules that produce vibrational absorptions within the NIR
include water, hydroxyl, carbon dioxide, carbonates, sulfates and methane (Clark, 1999). In many
instances, the fundamental frequency of absorption is beyond 2500 nm, but overtones and combinations
can produce higher frequency vibrations that produce absorptions within the SWIR. Vibrationa bands
occur at longer wavel engths than those due to electronic processes, and typically are less broad. For amore
detailed discussion of spectroscopy and absorption processes, see Clark, 1999.

Urban materials commonly vary regionally dueto local resources, such asthe availability of marble, wood
or limestone for construction or dueto local customswhich can vary theingredients used in roof materials,
tile, brick and concrete aggregates (Ben-Dor, 2001; Hepner, Verbal commun. 2004). For example, many of
the spectra published by Ben-Dor (2001) for Tel Aviv, show prominent calcium carbonate absorptions that
are nearly lacking in the Santa Barbaraarea. The potential impacts of local customs and source materials
should be taken into account when devel oping regional spectral libraries and caution should be used when
exporting aspectral library from one part of the world to another.
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Example spectrafrom the Santa Barbara areaillustrate el ectronic and vibrational absorptions (Figs. 5ad
and 6a-d). Unless otherwise stated, spectra were acquired within +/- 2 hours of solar noon from heights of 1
m or |less above the surface. Spectrawere typically collected by setting the ASD in raw DN mode, setting
the instrument to average 10 spectra per measurement, and collecting 5 replicates per sample. Each
replicate was standardi zed to reflectance using a Spectralon standard acquired within 5 minutes of the
sample. Reflectance spectrafor each replicate were then assessed for quality, and averaged to produce a
single spectrum for each sample. Figures 5a-d show a selection of roofing materials, bare soil, non-
photosynthetic vegetation (NPV: Robertset al. 1993) and residential grass. Figure 3a shows six types of
composite shingle with relatively low reflectance spectra (5 to 20%) that in many cases are nearly
featureless. Exceptions are the dark grey tile (1), which shows aminor peak in green wavel engths (520
nm); and the light tan/orange tiles (3) and light grey shingle (4), which show evidence of the presence of
carbonates in the mixture (~2330 nm). Figure 5b shows a sel ection of wood shingle. All of these spectra
show vibrational bands centered around 2100 and 2300 nm due to the presence of lignin and cellulose.
Reflectance differences between spectraarein part due to different ages and degrees of weathering. Three
wood shingle spectra show subtle absorptions due to the presence of chlorophyll in moss, algae and lichens.
Similar findings are reported by Ben-Dor (2001), who points out the important role of coatings on
modifying urban spectra. Ligno-cellulose bands are particularly important in hel ping distinguish wood
shingle from bare soil or other roof types.
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Figure 5) Spectra of typical roof materials and non built-up cover types from the Santa Barbara ASD urban
spectral library. () showstypical composite shingle spectra, (b) shows concrete tiles, (c) wood shingle and
(d) avariety of non-built up surfaces. Note: The small-scale variations at ~950 nm are an artifact of the
field spectrometer and represent the area of transition/overlap between the sensor materials. Other sensor

induced spectral variations relate to the “noisy” signal in the SWIR |1 region above 2300 nm. These

artifacts are present in all spectraand appear strongly in low reflectance targets. The major water vapor
absorption bands are interpolated. Note the different scalesin the y-axis.
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Figure 5¢ shows 7 spectraof red tile (1), calshake (2: asynthetic inorganic substitute for wood shingle),
and cedarlite (3:a concrete substitute for wood shingle). Strong visible light absorption in red tile and
absorptions in the NIR represent iron-oxide absorption features centered at 520 nm, 670 nm and 870 nm.
Liquid water and hydroxyl absorptions, typically found in clays, arelacking in fired brick and the
reflectance is higher towards longer wavel engths due to the loss of water in the production firing process
(Heiden et al. 2001). A comparison of red tile from Santa Barbara, to spectra published by Ben Dor (2001),
demonstrates remarkable similaritiesin the composition of red brick in Isragl and Santa Barbara. Synthetic
wood shingles (consisting of concrete or cement), although resembling wood shingle in the visible portions
of the spectrum, are nearly featurelessin the SWIR.

Figure 5d shows spectra acquired from various non-built up urban surfaces. The most prominent spectral
features are evident in the green residential grass spectrum (1), which shows pronounced chlorophyll
absorptions at 450 and 680 nm, a green peak centered at 550 nm, and vibrationa water absorptions at 980,
1200, 1400 and 1900 nm. The highest reflectance was observed in landscaping bark (4), which showed
prominent ligno-cellulose bands in the SWIR. Spectra of bare soil were moderately featureless, showing
only agenera increasein reflectance from the visible to SWIR and a subtle absorption centered at 2100
nm. Dead pine needles (5) show prominent ligno-cellulose bands with some of the lowest reflectance
measured for NPV.
a)

Asphalt

20

Parking lot surfaces

Reflectance [%]

Reflectance [%]

2)

0 : : 0
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

800 1000 1200 1400 1600 1800 2000 2200 2400

— 1) fresh asphalt mix
—— 3) Refurbished asphalt road

‘Wavelength [nm]

— 2) New asphalt road
4) Old asphalt road, fair condition

)5) Old asphalt road, very poor condition

70

d)

Wavelength [nm]

Concrete
60

2)

Reflectance [%]

3)

Reflectance [%]

Gravel

2)

400 600 800 1000

= 1) older concrete sidewalk

1200 1400 1600 1800 2000 2200

Wavelength [nm]

2) new concrete sidewalk

2400

3) concrete road/bridge

600

—— 1) gravel driveway

800 1000 1200 1400 1600 1800 2000 2200 2400

Wavelength [nm]

2) gravel along side road

Figure 6) Spectra of typical materials of transportation surfaces from the Santa Barbara ASD urban spectral
library. (a) shows asphalt spectra, (b) shows parking lots, (¢) concrete sidewalks and bridges and (d)

gravel

S.

15



Figure 6a-d shows spectral variationsin avariety of transportation materials. Figure 6a shows the impact of
aging and condition on asphalt spectra. New asphalt surfaces (1) have the lowest reflectance with increased
reflectance towards 2100 nm and an overall convex shape. The most prominent absorption features occur
around 2350 nm. Aging and deterioration result in ageneral increase in asphalt reflectanceinal parts of
the spectrum. The natural aging of asphalt is caused by reaction with atmospheric oxygen, photochemical
reactions with solar radiation, and the influence of heat, resulting in the loss of oily components by
volatility or absorption, changes of composition by oxidation, and changesin molecular structuring (Bell,
1989). Short-term losses of oily compounds produce dramatic differences between new and fresh asphalt
(2). Inarelatively short period of time, newly lain asphalt nearly doubles in reflectance with reduced
expression of the 2350 nm absorption. Long-term aging due to oxidation and photochemical reactions
produces increasing reflectance in older, more damaged surfaces due to continued loss of oily components
and the loss of the sealing tar surface and the accumulation of dirt and dust. The oxidation processis clearly
shown by the appearance of iron-oxide absorption features at 520 nm, 670 nm and 870 nm, especially in
spectrad and 5. In general, the distinct spectral variations that represent the aging and condition of asphalt
surfaces represent an interesting spectral contrast that might be used to map road age and specific
conditions using imaging spectrometry. The most featurel ess, low reflectance spectrawere located in
parking lots (Fig. 6b). Reflectance in parking lots varied from an average around 8% to a high around 13%.
Spectral features are completely absent in many of the spectra.

0.8
0.7
0.6
3
205
S
204
S
~ 0.3
0.2

0.1

350 850 1350 1850 2350
Wavelength (um)

1) fresh white paint 4) fresh yellow paint

2) red paint 5) old yellow paint
3) old white paint

6) blue paint
Figure 7) Spectraof typical paints from the Santa Barbara ASD urban spectral library.

Spectraof dry concretes are shown in Figure 6¢. The highest reflectance was observed in fresh concrete,
which showed only subtle absorptionsin the SWIR. Material aging and degraded conditions resulted in an
overall decrease in reflectance. Decreasing surface reflectance most likely reflects the impact of dust and
dirt accumulating on the surface. Older concrete surfaces (1) also show subtle absorptions potentially due
to iron-oxides and clay and carbonate absorptions in the SWIR. Low reflectance on the concrete bridge was
largely due to darkening by skid marks and rubber left by tires. Figure 6d shows spectra of two gravel
surfaces, gravel dong the side of aroad (2) and agravel drive way (1). Prominent vibrational bands are
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evident in the SWIR in road gravel, most likely due to the presence of calcium carbonate within the rock
mix.

Some of the most distinctive spectra have no natural analogs (Fig. 7). Thisfigure shows the spectra of
paints commonly used on road surfaces, parking lots and curbsin the USA. Spectrainclude fresh white
paint (1), old white paint (3), red paint (2), fresh and old yellow paint (4 and 5) and blue paint (6). A
common feature to al paint spectrais abroad absorption covering severa hundred nm in the SWIR. Asin
concretes, older paintstypically show adecrease in reflectance. Blue paint shows a striking similarity to a
mixture between asphalt and trees, suggesting some potential for confusion.
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Figure 8) @) Spectraof dust collected from the vicinity of the World Trade Center and b) of chrysotile
asbestos. Modified from original figures published in Clark et al. (2001).

Figure 8 shows an example of gypsum and the asbestiform mineral chrysotile (from Clark et al. 2001).
These spectrawere collected as part of rapid emergency response after the World Trade Center disaster in
an effort to map potential environmenta contaminants (Clark et al. 2001). Figure 8a shows severa
prominent vibrational bands, including a strong liquid water band centered at 1.94 ? m, a weaker water/OH
absorption at 1.45? m and atriplet of diagnostic absorptions for gypsum between 1.42 and 1.54 ? m,
probably derived from crushed wall board (Clark et al. 2001). Clark et al. (2001) a so cite subtle evidence
for portlandite or muscovite, minerals commonly found in concretes. Figure 8b shows the spectrum of
chrysotile, an asbestiform mineral with prominent iron absorptionsin the VNIR, and prominent vibrational
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bandsin the SWIR. A key objective of the analysis of AVIRIS images acquired over the World Trade
Center in September, 2001, was to determine whether abestiform dust was present at harmful levels based
on the presence of chysotile- specific absorption featuresin image data (see below).

QUANTIFICATION AND/OR SPECTRAL MANIPULATION AND/OR DATA
PROCESSING

Data preprocessing

As stated previously, spectraare most readily interpreted when they are transformed into reflectance. The
process of converting measured radiance or DNs to reflectance has been called reflectance retrieval .
Techniques for retrieving surfacereflectance can be roughly divided into two major categories, relative
reflectance retrieval techniques and absolute reflectance retrieval techniques. The most common approach
for relative reflectance retrieval is called theempiricd line (Robertset al. 1985). Using this approach, two
or more targets of known reflectance arelocated in animage. A linear equation is established for each
wavelength by regressing known reflectance against measured radiance or DNs. The advantage of an
empirical line calibration is that radiometric calibration (conversion of DNsto radiance) isnot a
requirement. However, it does make the assumption that the atmosphere is uniform, resulting in significant
artifactsin strong atmospheric bands (e.g., water vapor, CO,) if arange of elevations are present in the
scene (Robertset al. 1993).

Absolute approaches retrieve surface reflectance based on physical principles, in which measured radiance
istypically compared to radiance generated by an atmospheric radiative transfer model, such asthe
Moderate Spectral Resolution Atmospheric Transmittance Algorithm and Computer Model (MODTRAN:
Berk et al. 1999). This general approach is commonly referred to asforward-inversion. Accurate
radiometric calibration of the datais afundamental requirement of forward-inversion. One of the greatest
sources of error inforward-inversion is spectral calibration. For example Green (1998), documents
relatively large errorsin reflectance retrieval, associated with spectral calibration errors of afew nm or less.
A number of authors have developed models that have the capability of retrieving surface reflectance from
imaging spectrometry data. For example, Green et al. (1993) describe amodel in which the program
MODTRAN is used to build alook up table of radiance modeled with different amounts of atmospheric
water vapor. Residuals between measured and modeled radiance are calculated and the best model is
selected that minimizes the residual within the spectral fit region. This model aso includes variables that
account for the expression of liquid water in spectra, generating maps of water vapor, liquid and surface
reflectance. Similar models have also been developed by Gao et al. (Atmospheric Remova (ATREM):
1993; 1997) and are commercially available such as ACORN (Atmospheric Correction Now, |Mspec
Associates). Surface reflectance retrieved through forward-inversion often shows minor artifacts along the
flanks of strong water vapor bands and can show systematic errorsin reflectance. To minimize these
artifacts, asingle reflectance spectrum of a ground target can often be used to compensate for differences
between measured and modeled radiance (Clark et al. 2002). Figure 9 shows an example of such an
approach, in which reflectance measured from one ground target in Canada, was used to adjust retrieved
reflectance for alarge number of AVIRIS scenes acquired during the Boreas mission in central
Saskatchewan and northern Manitobain 1994 (Robertset al. 1999). High frequency artifacts can also be
suppressed in the absence of ground data using spectral polishing approaches such as EFFORT (Boardman,
1998). Errorsin retrieved water vapor, can seriously impact surface reflectance by generating artifacts
along the margins of water vapor bands as shown by Green (2001).
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Figure 9) Schematic figure showing the process of retrieving surface reflectance from AVIRIS data. The
image to the left was acquired during the 1994 Boreas campaign. (a) shows a radiance spectrum measured
by AVIRIS from afield caibration target. (b) showsthefirst iteration of reflectance retrieved using the
approach described by Green et a. (1993). (c) shows surface reflectance cal culated using afield spectrum
to correct for artifacts.

Reflectance retrieval in urban areas can be further complicated by atmospheric pollutants, which typically
do not have a uniform distribution in space and can vary throughout the day. Atmospheric pollutants most
typically impact scattering at shorter wavelengths. In most absol ute reflectance retrieval approaches, they
are accounted for by varying the atmospheric visibility, but not allowed to vary spatially. Thus spatially
varying scattering due to atmospheric pollutantsistypically not corrected.

Another common preprocessing step is georectification. Unlike spaceborne data, aircraft data are subject to
considerable distortion due to the instability of low atitude platforms. In order to make maps and relate
them to ground reference data, it is critical that aircraft-related and ground-related di stortions are removed.
One common approach isto use a“ rubber-sheet” stretching approach and numeroustie points between a
base map and measured image (Wiemker et al., 1996). Unfortunately, this approach is not practical for
highly unstable platforms, such as the Twin-Otter, which is used to acquire high spatial resolution AVIRIS.
Fortunately, recent improvements in on-board navigation information and recent software development
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have made it possible to georectify images to within afew pixels (~10 m for a4 m GIFOV) in anear-
automated fashion (Boardman, 1999).

Several techniques have also been devel oped for spectral preprocessing. One of the most common
approaches for data reduction is the Minimum Noise Fraction (MNF) transform (Green et al. 1988). The
MNF transform is similar to a Principal Components Analysis, in which a population of spectrais
transformed by a set of orthogonal vectorsthat account for progressively less of the spectral variability. The
first few MNF bands typically account for amgj ority of the variance, and higher MNF bands are dominated
by sensor noise. As spectral dimensionality increases, the number of MNF bands required to account for
signal increases, approaching over 30 dimensionsin some cases. Many spectral analysis techniques (see
below) are applied to data after they have been reduced by an MNF transform.

Another common spectral preprocessing techniqueis called continuum removal (Clark and Roush, 1984).
The continuum can be defined as a spectrum that lacks all major high frequency absorptions. Mustard and
Sunshine (1999) defineit as “the collective properties of spectral regions exhibiting smoothly varying
spectral propertiesthat, taken as awhole, define the upward limit of the genera reflectance curvefor a
material”. Continua, which vary from one spectrum to the next, are typically fit by connecting regions of
peak reflectance, and bridging absorption features with atangent line. Continuum removal involves
calculating the ratio of the measured spectrum, divided by the spectrum of its continuum. Continuum
removal is useful in that it accentuates more subtle absorption features, and normalizes brightness
differences. However, it may also be problematic if the spectral response of the mineral isweak and
depends on the wavelength bounds used to define the continuum.

Spectral matching techniques
A large number of tools have been developed for matching alibrary of known spectrato spectra measured

inthefield or by an imaging spectrometer. Currently, the most common approach for spectral matching in
urban remote sensing is the use of standard supervised classification techniques, in which spectraare
acquired from a number of known targets (known astraining sites) and used to determine the statistical
propertiesof each class (Richards, 1993). Examplesin which amaximum likelihood classifier (MLC) was
applied to urban imaging spectrometry to map urban land cover include McKeown et al. (1999), Roessner
et al. (2001) and Herold et al. (2003). Once training sites have been established, training statistics are
extracted (typically amean and variance) for each class, then the classifier is used to assign apixel to one
of several classes based onits statistical similarity to a particular class.

Other approaches more explicitly designed for the analysis of imaging spectrometry data have also been
designed. Examples include the Spectral Angle Mapper (SAM; Kruseet al. 1993), in which the angle
between a reference spectrum and an unknown is calculated as the inverse cosine of the product of the
transpose of one vector, multiplied by the other, divided by the product of the lengths of the two vectors:

q = cos [a’ bi(|lall* [bl})]

where g isthe angle between two vectors, aand b, and ||a]| and ||b|| are each vector lengths. The key to this
approach isthat any spectrum can be treated as a vector in n-dimensional space emanating from the origin.
To map amaterial, a spectrum is selected as a reference, then the angle between this reference and a
spectrum in theimage is calculated. To map multiple materials, multiple references are selected and
unknowns are assigned to the reference that produces the smallest angle. Spectral angles that exceed apre-
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defined threshold (say 2 degrees) for all reference spectraare commonly masked out. McKeown et al.
(1999) used SAM in additiontoaMLC in their analysis.

A number of techniques have been devel oped in which spectra are model ed as linear combinations of
vectors. One of the most common approaches is Spectral Mixture Anaysis (SMA), inwhich amixed
spectrum is modeled as the sum of “pure” spectra, each weighted by the fraction of the materia within the
field of view. SMA isapowerful approach, in that it provides estimates of surface abundance aswell as
composition. However simple SMA, in which one set of endmembersis used to “unmix” an entire sceneis
poorly suited for urban areas due to the large number material s within the scene. To compensate for these
limitations Roberts et al. (1998) have devel oped Multiple Endmember Spectral Mixture Analysis
(MESMA), in which the number and types of endmembers are allowed to vary per pixel. Although
MESMA has been primarily applied to natural systems, early applicationsin urban areas seem promising
(Gardner et al. 2001). An aternate approach was used by Roessner et al. (2001) to account for considerable
spectral variability in an urban area. Roessner et al. (2001) used aMLC tofirst identify relatively unmixed
spectra, which could then be used as candidate endmembers. Once identified, these spectrawere used as
seeds to unmix neighboring pixels and cal culated mixtures.

Several aternative linear transformations have been proposed for the analysis of imaging spectrometer
data. Harsanyi and Chang (1994) first introduced the concept of orthogonal subspace projection, in which
spectraare transformed into a set of orthogonal vectors. Vectors are calculated such that spectral features
that are not of interest produce alow score, and spectrathat match the material of interest produce ahigh
score. Variations on orthogonal subspace projection include Matched Filters, Foreground/Background
Analysis (Smith et al. 1994), and Mixture Tuned Matched Filters (MTMF: Boardman et al. 1995). Ben-Dor
et al. (2001) and Ben-Dor (2001) use aMTMF and ten endmembersto classify CASI data acquired over
Tel-AVIV, lsrael. We provide an example using a Matched Filter later in the chapter.

Spectral fitting represents another powerful analysistool. An example of thisisTetracorder (Clark et al.
2003), in which spectrafirst undergo continuum removal, then anon-linear least squares approach is used
to choose the best candidate among a series of reference materials based on the highest fit. Specific
minerals are typically mapped using fit regions tailored to provide the best discrimination for that type of
absorption feature. For example, ironroxides are typically mapped using a different fit region than clays.
Clark et al. (2001) provide an example of Tetracorder, in which references samples of various dusts and
asbestiform minerals are used to map candidate materialsin the vicinity of the World Trade Center disaster.

EXCEPTIONAL ASPECTSOF THE TECHNIQUE

Thefine scale of urban objects and the high diversity of surface materials severely complicate the use of
remote sensing in these areas. Currently, spaceborne imaging spectrometers lack sufficient spatia
resolution to be used for many urban applications. In contrast, airborne systems commonly meet a
minimum standard of 5 m or less and provide considerably greater spectral detail than aerial photography
and broad band images. Currently the magjor limitation on the use of imaging spectrometry is cost and the
availability of data.

In many instances, the added spectral information provided by an imaging spectrometer does not provide
sufficient benefitsto justify its use place of more inexpensive broad band or photographic sources.
However, in the instance where a specific wavelength region is required to map amaterial based on a
particular absorption feature, the use of an imaging spectrometer isjustified. Examples discussed in this
chapter include:
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Separation of wood shingle from other roof types

Sensors such as IKONOS and Quickbird are incapable of mapping these roof types at high accuracy. In
contrast, imaging spectrometers can definitively identify these roof types based the presence of ligno-
cellulose bandsin the SWIR. According to Herold et al. (2003), a broad band system such asLandsat TM
can map wood shingle, although the lack of spectral detail in the SWIR isalso likely to lead to greater
confusion with other materials.

Environmental contaminants
Clark et al. (2001) demonstrated the potential of an imaging spectrometer for mapping environmental

contaminantsin the aftermath of the World Trade Center disaster. In the case where diagnostic absorptions
are required to map a specific mineral, an imaging spectrometer may be the only practical means.

Very littleis still known about the spectra of urban materials. Considerably more research has focused on
natural materials such as plants, rocks and minerals. It is possible, given more research that comprehensive
libraries will be developed, increasing our ability to map specific materials based on diagnostic absorptions.
In the absence of more detailed knowledge of urban spectrometry, however, imaging spectrometers have
been shown to provide improved discrimination and land-cover mapping (e.g. Herold et al. 2003).
Fundamentally, multispectral systems are limited spectrally and must rely to a greater extent on spatial
patterns to map land-cover. Using an approach such as MESMA,, the potential exists for mapping hundreds
of distinct materias by alowing the number and types of endmembersto vary on a per pixel basis.
Whereas many materials are likely to remain problematic (i.e. asphalt roads and composite shingle), others
can be readily discriminated based on their spectra.

Techniques such as MTMF (Boardman et al. 1995), could potentially be employed to produce detailed
maps of materials below the resolution of the GIFOV. The ability to locate a material will depend to a
considerable extent on the spectra contrast of the material relative toits surrounding background. In other
words, it may be possible to extend our ability to map amaterial well below the GIFOV of the instrument
given asufficient amount of spectral leverage. Tradeoffs between spatial and spectral resolution have yet to
be established for an urban landscape. Experience from mineral mapping suggests that such an approach
should be fruitful, given greater knowledge of the spectra of urban materials.

NOVEL APPROACHES

Examplesfrom AVIRIS acquired in the Santa Barbara area

As part of several projects designed to evaluate the potential of hyperspectral datafor mapping
transportation infrastructure and roof materials, University of California Santa Barbara (UCSB) built an
urban spectral library for the Goleta/Santa Barbara area. A total of 6,500 spectrawere acquired between
late May and early June, 2001 using an ASD full range instrument on loan from the Jet Propulsion
Laboratory (Fig. 3). Once averaged and converted to reflectance, these spectraincluded 499 roofs, 179
roads, 66 side walks, 56 parking lots 40 road paints, 37 vegetation, 47 types of non-photosynthetic
vegetation (i.e., landscaping bark), 88 bare soil and beach spectra, 27 acquired from tennis courts and 50
more from miscellaneous surfaces.

One major research question we are addressing is the feasibility of imaging spectrometers for mapping the

large spectra diversity of urban materials within a highly mixed urban environment. Because unique
spectral features are present in red tile and wood shingle, these materids should be relatively easy to map
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(Fig. 5a, b). However, spectral similarities between other material's, such as composite shingle and asphalt
surfaces (dueto similar material composition) suggest significant confusionislikely to occur (Fig.5).

To quantify spectral separability of materials, we employed the Bhattacharyya distance (B-distance) asa
measure of spectral separability (Jimenez and Landgrebe, 1999). The B-distance is calculated using Eq.1:

1
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where |; and ? ; are the mean vector and the covariance matrix of classes one and two,
respectively. This separability metric was developed to measure the statistical distance
between two Gaussian distributions (Kailath, 1967) and incorporates both first order and second
order statistics, in which thefirst half of Equation 1 incorporates differencesin means, and the second part
incorporates covariance (Landgrebe, 2000). Because the B-distance only provides relative measures of

separability, it cannot be used to establish absolute thresholds. Low B-distancesimply relatively lower
separability.

Table 2 shows that the lowest B-distance va ues occurred between specific types of roofs and roads. These
spectral similarities are due to generic material properties and are responsible for lower accuracies reported
by Herold et al. (2003). In fact, spectral confusion between individual roofs and roads is higher than for
different road surface types. Concrete roads and to some extent asphalt roads have fairly high average and
low minimum separation. Thisindicaes alarge within class variability and emphasizes the spectral
complexity of transportation surfaces compared to other urban land cover types.

Table 2) Matrix of B-distance values for minimum and average separability between different manmade
land cover types.

1 2 3 4: 5: 6: T 8: 9

Com_sh|Grav_rf | Tar_rf | Gr_tile | Rd_tile| Wd_sh | Asp_rd | Concr |Grav_rd |10: P_lot
1: Composite shingle 56 19 14 75 61 8 18 106 13
2: Gravel roof 405 36 46 109 189 51 17 88 84
3: Tar roof 190 599 30 69 127 17 20 135 26
4: Gray tileroof 92 178 67 34 32 35 16 61 31
5: Red tile roof 549 581 559 375 84 90 52 147 130
6: Wood shingle roof 315 359 171 172 197 218 31 152 249
7: Asphalt road 244 693 119 99 1331 | 351 28 68 7
8: Concrete road 687 735 1325 423 1247 977 1151 29 11
9: Gravel road 2533 2514 1733 2460 927 4370 3047 1799 117
10: Parking lot 194 700 98 81 1499 436 194 897 3832
Codling of values e Wi cpeabiiy (uppe gt pet o )
Gray background: Average value < 150/ Minimum value < 20

The B-distance can be used to design an optimal subset of spectrafor mapping discriminating urban
materials. Figure 10 shows spectraof nine materials and the wavelength location of 14 bands which best
discriminate them. Landsat TM bands are shown in grey, illustrating that several important wavelength
regions are not sampled by the Landsat system.
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Figure 10) Most suitable spectral bands (vertical lines) for urban mapping derived from the ASD spectral
library and the AVIRIS data compared to spectral signatures of several urban land cover types and the
spectral coverage of LANDSAT TM satellite sensor (gray in the background).

Based on this analysis, the most suitable bands for urban mapping appear in nearly all parts of the spectrum
with afair number in the visible region (Fig. 10). Thisindicates that narrow spectral bands (~ 20 nm wide)
areimportant in resolving small-scale spectral contrast (e.g. color, iron absorption features) among
materials and land cover typesin this spectral region. Severa additional bands appear in the SWIR, some
of which are associated with specific absorption features (e.g. clays) while others are responsive to large
reflectance differences between materials, such as the high reflectance of red tile beyond 1000 nm.

Based on spectra of urban materials and the B-distance, we would expect some materias, such aswood
shingle roofs, to be readily mapped by a sensor such as AVIRIS at very high accuracies. In contrast, we
would anticipate considerabl e confusion between some types of roofs (mostly composite shingle) and
asphalt roads. In order to test this, we employed a matched filter in the Environment for Visualizing Images
(ENVI) software package to high spatial resolution AVIRIS data acquired over Goleta, California (Fig. 11).
Figure 11a shows the matched filter scores for wood shingle roof; Figure 11b shows the asphalt road and
Figure 11c shows a spatialy georectified map of known roads and wood shingle roofs. Comparison of
these three figures demonstrates that wood shingle roofs could be mapped at very high accuracies,
producing high matched filter scoresin virtually all areas mapped as wood shingle. The most significant
fal se positives appear to be open fiel ds consisting of senesced grass. In contrast, the matched filter for
asphalt road shows considerable error. In Figure 11b, the matched filter correctly maps most road surfaces,
but also maps large areas of dark composite shingle. One approach for reducing spectral confusion between
these two material types would be to incorporate athird dimension into the analysis. For example, if
LIDAR or IFSAR were used to map the height of surfaces, confusion between roads and roofs would be
greatly reduced.
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Figure 11) Results of matched filter analysis for wood shingle roofs (a) and asphalt roads (b) compared to
reference data (c) for wood shingle roofs and asphalt roads.

Examplesfrom the World Trade center
Imaging spectrometry has considerable potentia to help in emergency disaster response. Potential

applications of an imaging spectrometer included mapping thermal sources and environmental
contaminants. Following the World Trade Center Disaster of September 11, 2001, AVIRIS was deployed
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on a Twin Otter and flown to the area. A particular concern was the potential of widespread dissemination
of potentially cancer causing asbestiform dusts. However, other dusts originating from crushed urban
materials are also of concern dueto their potentia to produce respiratory problems.
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Figure 12) Spectraof World Trade Center dust with variable amounts of chrysotile ashestos. Outer edges of
chrysostile absorption bands are marked by arrows. From Clark et al. (2001).

AVIRIS imaged the World Trade Center and its vicinity four times between September 15 and 23, 2001.
Because of time constraints for emergency relief efforts, the datawere radiometrically calibrated,
georectified and corrected to surface reflectance as quickly as possible after image data were acquired, then
andyzed using Tetracorder at the United States Geological Survey (USGS). For example, data acquired on
September 16™ were shipped to the USGS by September 17" and fully analyzed between September 17"
and 19" using real-time feedback from field crews. Examples shown here are derived from an Open File
Report published by the USGS (Clark et al. 2001). The reader is encouraged to read the full report.

World Trade
Center 3

New Yo

Figure 13) Serpentine and amphibole mineral map in the vicinity of the World Trade Center, generated by
Clark et al. (2001) using Tetracorder. A lack of color isindicative of low concentration of chrysotile or
amphibole asbestos.
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Figure 14) Spectraof various dusts and building materials. From Clark et al. (2001).

Researchers from the USGS collected spectrafrom 33 dust samples acquired in the vicinity of the two
towers between September 17 and 19", 2001. Figure 12 shows a spectral subset of several dusts determined
to have variable amounts of chrysotile asbestos. Tetracorder was applied to high spatial resolution AVIRIS
datato determine the extent of asbestiform dust contamination (Fig. 13). Thelack of color in thisfigure
suggests that contamination levels remained low, although there is some evident of east-west spread of
chrysotile dust (Clark et al. 2001).

World Trade
Center area,
New York

U.S. Geological Survey
2001

usa
Imaging Spectroscopy
Tetracorder 4.0awtcz

Image sampling:
1.7 metersipixel

N
T 200
meters

Figure 15) Dust/debris plume map in the vicinity of the World Trade Center, generated by Clark et al.
(2001) using Tetracorder.
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Crushed building materials represent a potentially large source of exotic dust. Figure 14 shows a selection
of spectra, published by Clark et al. (2001) showing cements, gypsum wall board, concretes and dusts
collected from the World Trade Center. These spectrawere used as reference spectrafor Tetracorder and
used to map different dust types disseminated throughout the areas (Fig. 15).

Maps such as these have considerable potential in aiding relief efforts. The extremely rapidity that these
data were acquired, processed and analyzed to make maps offers a glimpse of some of the potentia of
imaging spectrometry for rapid urban disaster response.

SUMMARY

Urban areas represent the hub of human activities, where most human commerce and populationis
concentrated. Remote sensing is currently undergoing a renaissance in these areas, in large part due to the
availability of sensorsthat provide unprecedented spatial and spectral detail. Urban areas are particularly
challenging for remote sensing because of the requirement of fine spatial resolution (~5 m), the high
diversity of materials, complex lighting geometries (and bidirectional reflectance properties of many
surfaces) and potentially variable atmospheric properties due to airborne pollutants. Airborne imaging
spectrometers, by sampling alarge number of wavelengths at fine spatial resolution are uniquely qudified
to map urban materials at high accuracies.

In this chapter we provide a brief overview of some important aspects of urban imaging spectrometry. We
provide a brief introduction documenting some recent applications of imaging spectrometry in urban aress.
We follow with a discussion of important radiometric and spectral concepts, with afocus on how they
apply to urban areas. We discuss instrumentation, with afocus on field instruments and sampling
procedures. We a so discuss airborne platforms, focusing primarily on sensorsthat have recently been used
to map urban land cover. Airborne sensors are particularly important because they offer the potentia of
devel oping a comprehensive spectral library at relatively low cost at an appropriate spatial resolution. We
illustrate important aspects of urban spectra using field spectra measured in the Santa Barbara area. We
include spectra of roofs of varying materials and conditions, transportation surfaces (roads, sidewalks) and
street paints. Next, we discuss analysist echniques, starting with preprocessing (including reflectance
retrieval and georectification), followed by a subset methods used to identify materials. Although alarge
diversity of analysistechniques exist, we present only those that have been recently applied to imaging
spectrometry of urban areas. We conclude the chapter with several examples of applications, including the
development of aspectral library for the Santa Barbara area and the use of imaging spectrometry to map
environmental contaminants at the World Trade Center. Imaging spectrometry isarapidly evolving field in
which new sensors and new analysis methods are continually being developed. Urban remote sensing
represents arelatively new, but exciting application for this technology. The combination of technologies,
such as LIDAR, which can provide avertical description of alandscape, and imaging spectrometry, which
provides improved spectra discrimination, is particularly powerful.

ACKNOWLEDGEMENT

The ASD field spectrometer was kindly supplied by the NASA Jet Propulsion Laboratory. The author
acknowledges the support of the U.S. Department of Transportation, Research and Special Programs
Administration, OTA #DTRS00-T-0002 (NCRST-Infrastructure), NASA EO1-Science Vdidation (NCC5-
496), Solid Earth and Natural Hazards (NAG2-1140) and regiona Earth Science Application Center
(RESAC) programs (CSDH NASA RESAC 447633-59075).

28



REFERENCE LIST

ANDERSON, JR., HARDY, E.E., ROACH, JT., & WITMER, R.E. (1976): A Land Use and Land Cover
Classification Scheme for Use with Remote Sensor Data, U.S. Geological Survey Professional Paper
964.

BELL, C.A. (1989): Summary Report on the Aging of Asphalt-Aggregate Systems, Strategic Highway
Research Program (SHRP) Publications SHRP-A-305, 100 p., URL.:
http://gulliver.trb.org/publications/shrp/SHRP-A-305.pdf (access: September 2002).

BEN-DOR, E. (2001): Imaging Spectrometry for Urban Applications, in Imaging Spectrometry, (Van der
Meer, F.D., and de Jong, S.M. (Eds), Kluwer Academic Publishers, Netherlands, 243-281.

BEN-DOR, E., LEVIN N., & SAARONI, H. (2001): A spectral-based recognition of the urban
environment using the visible and near-infrared spectral region (0.4-1.1 m). A case study over Tel-
Aviv, Int. J. Remote Sens., 22 (11), 2193-2218.

BERK, A., ANDERSON, G.P., BERNSTEIN, L.S., ACHARYA, PK., DOTHE, H., MATTHEW, M.W.,
ADLER-GOLDEN, SM., CHETWYND, JH. J., RICHTSMEIER, S.C., PUKALL, B., ALLRED,
C.L.,JEONG, L.S, & HOKE, M.L. (1999): MODTRAN4 Radiative Transfer Modeling for
Atmospheric Correction, in Proceedings of SPIE Optical Spectroscopic Techniques and
Instrumentation for Atmospheric and Space Research I11, 19-21 July, 1999, Vol. 3756, 6 pp.

BIANCHI, R., CAVALLI, RM., FIUMI, L., MARINO, C.M., PANUZI, S. & PIGNATTI, S. (1996):
Airborne Remote Sensing in Urban Areas: Examples and Considerations on the Applicability of
Hyperspectral Surveys over Industrial, Residential and Historical Environments, in the Second
International Airborne Remote Sensing Conference and Exhibition I: San Francisco, CA, 439-444,

BOARDMAN, JW. (1998), Post-ATREM polishing of AVIRIS apparent reflectance data using EFFORT:
alesson in accuracy versus precision, in Summaries of the 8" JPL Airborne Earth Science Workshop
ed) Green, R.O., JPL Publication 99-17, Pasadena, CA 1p.

BOARDMAN, JW. (1999): Precision geocoding of low atititude AVIRIS data: Lessons learned in 1998,
in Summaries of the 8" JPL Airborne Earth Science Workshop (ed.) Green, R.O., JPL Publication 99-
17, Pasadena, CA 63-68.

BOARDMAN, JW., KRUSE, F.A., & GREEN, R.O. (1995): Mapping target signatures via partia
unmixing of AVIRIS datain Summaries of the 5" JPL Airborne Earth Science Workshop (ed.) Green,
R.O., JPL Publication 95-1, Vol 1, Pasadena, CA, 23-26.

CLARK, R.N. (1999): Spectroscopy of Rocksand Minerals and Principles of Spectroscopy, in Remote
Sensing for the Earth Sciences, Manual of Remote Sensing 3" Ed. Vol. 3 (ed.) Rencz, A.N., John
Wiley & Sons, Inc. NY, 3-52.

CLARK, RN, GREEN, R.O., SWAYZE, G.A., MEEKER, G., SUTLEY, S, HOEFEN, T.M.,LIVO,
K.E., PLUMLEE, G., PAVRI, B., SARTURE, C., WILSON, S., HAGEMAN, P., LAMOTHE, P,
VANCE, JS,, BOARDMAN, J., BROWNFIELD, I., GENT, C., MORATH, L.C., TAGGART, J,
THEODORAKOQS, P.M., & ADAMS, M. (2001): Environmental Studies of the World Trade Center
area after the September 11, 2001 attack, U.S. Geological Survey, Open File Report OFR-01-0429
(http://pubs.usgs.gov/of/2001/ofr-01-0429).

CLARK, R.N. & ROUSH, T.L. (1984): Reflectance spectroscopy: quantitative analysis techniques for
remote sensing applications, J. Geophys. Res. 89, 6329-6340

CLARK, R.N., SWAYZE, GA., LIVO, K.E.,, KOKALY, RF., KING, T.V.V, DALTON, JB., VANCE,
S., ROCKWELL, B.W., HOEFEN, T., and MCDOUGAL, R.R. (2002): Surface reflectance calibration
of terrestrial imaging spectroscopy data, in Proceedings of the Eleventh JPL Airborne Earth Science
Workshop, (ed.) Green R.O., JPL Publication 03-04. 43-64.
(http://speclab.cr.usgs.gov/PAPERS.calibration.tutorial/).

CLARK, R.N., SWAYZE, GA., LIVO,K.E.,, KOKALY, R.F.,, SUTLEY, SJ.,, DALTON, JB.,
MCDOUGAL, R.R., & GENT, C.A. (2003): Imaging spectroscopy: Earth and planetary remote
sensing with the USGS Tetracorder and expert systems, J. Geophys. Res., 108(E12), 5131,
doi:10.1029/2002JE001847, December, 2003. http://speclab.cr.usgs.gov/PAPERS/tetracorder

GAMBA, P. & HOUSHMAN, B. (2001): Integration of Hyperspectral and IFSAR datafor Improved 3D
Urban Profile Recorstruction, Photogram. Eng. Remote Sens. 67 (8), 947-956.

GAO, B.C. HEIDEBRECHT, K.B. & GOETZ, A.F.H. (1993): Derivation of Scaled Surface Reflectances
from AVIRIS Data, Remote Sens. Environ., 44, 165-178.

29



GAOQ, B.C,, HEIDEBRECHT, K.B. & GOETZ, A.F.H. 1997): Atmosphere Removal Program ATREM)
Version 3.0 User’ s Guide, Center for the Study of Earth from Space, University of Colorado, Boulder,
pp 1-27.

GARDNER, M.E., ROBERTS, D.A., FUNK, C. & NORONHA, V. (2001): Road extraction from AVIRIS
using spectral mixture and Q-tree filter techniques, in Proceedings of the tenth AVIRIS Earth Science
Workshop, (ed.) Green, R.O., JPL Publication 02-1. Pasadena, CA, 145-150

GREEN, A.A., BERMAN, M., SWITZER, B. & CRAIG, M.D. (1988): A transformation for ordering
multispectral datain terms of image quality with implications for noise removal, IEEE Trans
Geoscience Remote Sens.,, 26(1), 65-74.

GREEN, R.O., CONEL, JE. & ROBERTS, D.A. (1993): Estimation of Aerosol Optical Depth, Pressure
Elevation, Water Vapor and Cal culation of Apparent Surface Reflectance from Radiance Measured by
the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) Using MODTRAN2, SPIE Conf. 1937,
Imaging Spectrometry of the Terrestrial Environment (ed.) Vane, G., The Society of Photo-Optical
Instrumentation Engineers, Orlando FL, 2-5.

GREEN, R.O. (2001): Atmospheric water vapor sensitivity and compensation regquirement for Earth-
looking imaging spectrometers in the solar-reflected spectrum J. Geophys. Res. Atm, 106(D15),
17443-17452.

GREEN, R.O. (1998): Spectral Calibration Requirement For Earth-Looking Imaging Spectrometersin the
Solar-Reflected Spectrum. Applied Optics, 37(4), 683-690.

GREEN, R.O., EASTWOOD, M.L., SARTURE, C.M., CHRIEN, T.G. ARONSSON, M.,
CHIPPENDALE, B.J,, FAUST, JA., PAVRI, B.E., CHOVIT, C.J.,, SOLIS,M.S,, OLAH,M.R. &
WILLIAMS, O. (1998): Imaging spectroscopy and the Airborne Visible Infrared Imaging
Spectrometer, Remote Sens. Environ., 65(3), 227-248.

GREEN, R.O. & PAVRI, B. (2002): AVIRIS Inflight Calibration Experiment Results for 2001, in
Proceedings of the 2002 AVIRIS Earth Science Workshop, (ed.) Green, R.O., JPL Publication 03-4,
Pasadena, CA, 125-138.

HARSANYI, J.C. & CHANG, C.I. (1994): Hyperspectral image classification and dimensionality
reduction: an orthogonal subspace projection approach. IEEE Trans Geosci. Remote Sens., 32(4): 779-
785.

HEIDEN, U., ROESSNER, S., SEGL, K. & KAUFMANN, H. (2001): Analysis of spectral signatures of
urban surfacesfor their area-wide identification using hyperspectra HyMap data in Proceedings of
|EEE/ISPRS Joint Workshop on Remoate Sensing and Data Fusion in Urban Areas, Rome, 173-177.

HEPNER, G.F., HOUSHMAND, B., KULIKOV, I. & BRYANT, N. (1998): Investigation of the
integration of AVIRIS and IFSAR for urban analysis, Photogramm. Eng. Remote Sens., 64 (8), 813 —
820.

HEROLD, M., GARDNER, M., & ROBERTS, D. (2003): Spectra resolution requirements for mapping
urban areas, |EEE Trans. Geosci. Remote Sens., 41(9), 1907-1919.

JENSEN, JR., & COWEN, D.C. (1999): Remote sensing of urban/suburban infrastructure and socio-
economic attributes, Photogramm. Eng. Remote Sens., 65 (5), 611-622.

JMENEZ, L. & LANDGREBE, D.A. (1999): Hyperspectra data analysis and supervised feature
reduction via projection pursuit, |EEE Trans. Geosci. Remote Sens., 37 (6), 2653-2667,

KAILATH, T. (1967): The Divergence and Bhattacharyya Distance Measuresin Signal Selection. IEEE
Trans. Communication Theory, 15, 152-160.

KRUSE, F. (1999): Visible and Infrared: Sensors and Case Studies, in Remote Sensing for the Ear th
Sciences, Manual of Remote Sensing 3" Ed. Vol. 3 (ed) Rencz, A.N., John Wiley & Sons, NY, 567-
612.

KRUSE, F.A., LEFKOFF, A.B., BOARDMAN, JB., HEIDEBRECHT, K.G., SHAPIRO, A.T.,
BARLOON, P.J. & GOETZ, A.F.H. (1993): The Spectral Image Processing System (SIPS)- Iterative
Visualization and Analysis of Imaging Spectrometer Data, Remote Sens. Environ., 44, 145-163.

LANDGREBE, D.A. (2000): Information Extraction Principles and Methods for Multispectral and
Hyperspectral Image Data, in Information Processing for Remote Sensing, Chapter 1, (ed). Chen, C.H.
World Scientific Publishing Co., URL: http://dynamo.ecn.purdue.edu/ ~landgreb/publications.html
(access September 2002)

MCKEOWN, D.M. Jr., COCHRAN, SD., FORED, S.J,, MCGLONE, J.C., SHUFELT, JA. & YOKUM,
D.A. (1999): Fusion of HY DICE Hyperspectral Data with Panchromatic Imagery for Cartographic
Feature Extraction, |EEE Trans. Geosci. Remote Sens,, 37(3), 1261-1277.

30



MCNEILL, JR. (2000): Something new under the sun, An environmental history of the twentiety-century
world, W.W. Norton and Company, NY, 421 pp.

MEDINA, M.A. (2000): Effects of shingle absorptivity, radiant barrier emissivity, attic ventilation
flowrate, and roof dope on the performance of radiant barriers, Int. J. Energy Res., 24(8), 665-678.

MUSTARD, JF. & SUNSHINE, JM. (1999): Spectra Analysisfor Earth Science: Investigations Using
Remote Sensing Data, in Remote Sensing for the Earth Sciences, Manual of Remote Sensing 3™ Ed.
Vol. 3 (ed) Rencz, A.N., John Wiley & Sons, NY, 251-306.

PRICE, J.C. (1995): Examplesof high resolution visible to near-infrared reflectance and a standardize
collection for remote sensing studies, Int. J. Remote Sens. 16, 993-1000.

RICHARDS, JA. (1993), Remote Sensing Digital Image Analysis, An Introduction, Springer-Verlag, New
Y ork, 340 pp.

RIDD, M.K. (1995): Exploring aV-1-S- (vegetation — impervious surface- soil) mode for urban ecosystem
anaysis through remote sensing: comparative anatomy for cities, Int. J. Remote Sens. 16, 2165-2185.

ROBERTS, D.A., ADAMS, JB., & SMITH, M.0O. (1993): Discriminating Green V egetation, Non-
Photosynthetic Vegetation and Soilsin AVIRIS Data, Rem. Sens. Environ., 44 (2/3), 255-270.

ROBERTS, D.A., GARDNER, M., CHURCH, R., USTIN, S., SCHEER, G. & GREEN, R.O., (1998):
Mapping Chaparral in the Santa M onica Mountains using Multiple Endmember Spectral Mixture
Models, Rem. Sens. Environ. 65, 267-279.

ROBERTS, D.A., USTIN, SL., OGUNJEMIYO, S,, GREENBERG, J., DOBROWSKI, SZ., CHEN, J. &
HINCKLEY, T.M. (2003): Spectra and Structural Measures of Northwest V egetation at Leaf to
L andscape Scales, Ecosystems, in press.

ROBERTS, D.A., YAMAGUCHI, Y., & LYON, R.J.P. (1985): =dibration of Airborne Imaging
Spectrometer Data to Percent Reflectance using Field Spectral Measurements, in Proceedings of the
19th International Symposium on Remote Sensing of Environment, Ann Arbor, Michigan, October 21-
25, 1985, 679-688.

ROESSNER, S, SEGL, K. HEIDEN, U. & KAUFMANN, H. (2001): Automated differentiation of urban
surfaces based on airborne hyperspectral imagery, |EEE Trans. Geosci. Remote Sens. 39 (7): 1525 —
1532.

SABOL, D.E., ADAMS, JB., & SMITH, M.O. (1992): Quantitative sub-pixel spectral detection of targets
in multispectral images, J. Geophys. Res. 97, 2659-2672.

SCHOTT, JR. (1997): Remote Sensing, the Image Chain Approach, Oxford University Press, NY, 394 pp.

SCHUELER, T.R. (1994): The importance of imperviousness. Watershed Protection Techniques, 1, 3,
100-111.

SMITH, M., ROBERTS, D., HILL, J,, MEHL, W., HOSGOOD, B., VERDEBOUT, J., SCHMUCK, G.,
KOECHLER, C. & ADAMS, J. (1994): A new approach to quantifying abundances of materialsin
multispectral images, in Proceedings of IGARRS 94, Pasadena, CA, Aug 8-12, 2372-2374.

SWAYZE, G.A., CLARK, R.N., GOETZ, A.F.H., CHRIEN, T.G., and GORELICK, N.S. (2003): Effects
of spectrometer band pass, sampling, and signal -to-noise ratio on spectral identification using the
Tetracorder algorithm, J. Geophys. Res., 108(E9), 5105, doi: 1029/2002JE001975, 30 p.

UNGAR, S. PEARLMAN, J. MENDENHALL, J. & REUTER, D. (2003): Overview of the Earth
Observing One (EO-1) Mission, IEEE Trans. Geosci. Remote Sens., 41(6 Part 1), 1149-11509.

WIEMKER, R., ROHR, K., BINDER, L., SPRENGEL, R. & STIEHL, H.S. (1996): Application of elastic
registration to imagery from airborne scanners, in Proceedings of the International Archivesfor
Photogrammetry and Remote Sensing, Vol 31, Part B, Commision 1V, 6 pp.

WOODCOCK, C.E. & STRAHLER, A.H. (1987): The factor scalein remote sensing, Remote Sens.
Environ., 21, 311-332.

WOY CHEESE, J.P., PAGNI, P.J. & LIEPMANN, D. (1997): Brand lofting above large-scalefires, in
Proceedings of the 2™ International Conference on Fire Research and Engineering (ICFRE2), August
3-8, 1997, Gaithersburg, MD, 137-150.

31



