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INTRODUCTION 
 
Imaging spectrometers have considerable potential for urban applications. In this chapter we discuss how 
imaging spectrometry has been used for urban applications and provide an overview of instrumentation, 
sampling, spectroscopy, and analysis with a focus on urban materials. Case studies are presented for Santa 
Barbara California, in which we evaluate optimal wavelengths for urban mapping, and the World Trade 
Center, where imaging spectrometry was used to map environmental contaminants rapidly in response to 
the disaster. 
 
There is a growing interest in the use of remote sensing in urban environments. Urban environments 
represent only a small percentage of land area, but they have become increasingly populated as greater 
numbers of individuals migrate from rural areas to cities, towns and suburbs. Globally, this trend has 
resulted in an increase in the urban population from approximately 2% in 1800 to estimates of over 50% by 
the turn of this century (Ben-Dor, 2001). Urban environments also have a growing impact on adjacent lands 
as sources of urban expansion into agricultural lands and native vegetation, sources of airborne and 
waterborne pollution, and net consumers of energy and resources (McNeill, 2000). There is a growing need 
for improved maps of urban surface materials, such as roof types for energy conservation and fire danger 
assessment (Woycheese et al. 1997; Medina, 2000), and impervious surfaces for improved estimation of 
flood potential and urban source pollution (Schueler, 1994; Ridd, 1995). The dynamic nature of urban 
environments necessitates technologies that are rapid, repeatable and provide large areal coverage at a 
reasonable cost, making remote sensing one of the most viable technologies.   
 
Until recently, most analysis in urban areas has relied upon aerial photography as a data source. Urban 
environments are especially challenging because urban objects typically have a small spatial extent, making 
aerial photography well suited to these areas. Recent advances in spaceborne systems, such as IKONOS 
(www.spaceimaging.com) and Quickbird (www.digitalglobe.com) provide cost effective alternatives to 
aerial photography. For example, IKONOS provides 1 m panchromatic and 4 m multispectral data, thereby 
meeting the minimum spatial resolution of 5 m considered necessary for accurate spatial representation of 
urban materials such as buildings and roads (Woodcock and Strahler, 1987; Jensen and Cowen, 1999). 
Quickbird provides even finer spatial resolution, providing 0.61 m panchromatic and 2.44 m multispectral 
data. However, multispectral and panchromatic systems such as IKONOS do not provide sufficient spectral 
information (i.e. necessary wavelengths or enough bands sampled) needed to discriminate many urban 
materials (Herold et al. 2003). For example senesced (dead) grass and wood shingle can be definitively 
separated from bare soil, road surfaces and non-wooden roofs based on the expression of ligno-cellulose 
bands in the short-wave infrared (SWIR), yet these wavelengths are not sampled by either of these sensors.  
 
Imaging spectrometers have sufficiently fine enough spectral sampling and sample enough wavelengths to 
address many of the weaknesses inherent in multispectral systems. Imaging spectrometers, such as the 
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS; Table 1), consist of a large number of spectrally 
contiguous bands (Green et al. 1998). The intensity of electromagnetic radiation reflected by the surface at 
different wavelengths depends on the source function (the sun); the physical structure of the surface; the 
chemical constituents present; and the extent to which radiance is modified by the atmosphere (Schott, 
1997). Imaging spectrometers, by sampling a large number of wavelengths, make it possible to better 
define each of these components, thereby improving the quality of retrieved surface reflectance and 
identifying the chemical and physical properties of materials within the field of view of the instrument 
(Green et al. 1998). Because many urban materials have unique chemical constituents, this offers the 
potential of improved mapping of urban land-cover through direct mapping of urban chemistry.  
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Table 1: Selection of airborne imaging spectrometers used in urban remote sensing and description of some 

key attributes. Sensors listed include AVIRIS (Airborne Visible Infrared Imaging Spectrometer, CASI 
(Compact Airborne Spectrographic Imager, DAIS7915 (Digital Airborne Imaging Spectrometer) HYDICE 

(Hyperspectral Digital Imagery Collection Experiment, HyMAP and MIVIS (Multispectral Infrared and 
Visible Imaging Spectrometer). Sources for AVIRIS, CASI and HYDICE include  Green et al. (1998) and 

Kruse (1999). Information for the DAIS7915 can be located at http://www.op.dlr.de/dais/dais-scr.htm. 
Information on HyMAP was determined from http://www.intspec.com/Products/HyMapProd.htm. 

 
Sensor Spectral Range FWHM FOV IFOV GIFOV Quantization 

AVIRIS 370-2500 nm 
10nm(nom) 
 32 deg 1mr (20m/20km) 12 bit 

  (224 bands) (9.8nm samp)     (4m/4km)   
              
CASI 400-1000nm 2.2nm 37.8deg 1.25mr (0.5m/0.4km) 12 bit 
  (19 to 288 bands) (1.9m samp)     (10m/8km)   
              
DAIS7915 450-2450nm 400-1000nm 51.2deg 3.3mr (5m/1.5km) 15 bit 
  (72 bands) (15-30 nm, 32)     (20m/6km)   
  7 thermal 1500-1800nm         
    (45nm, 8)         
    2000-2500nm         
    (20nm, 32)         
              
HYDICE 400-2500nm 10nm (nom) 8.9 deg 0.5mr (1m/2km) 12bit 
  (210 bands)       (4m/8km)   
              
HyMAP 450-2500nm 15-22 nm 30-65deg 1-3mr (1.5m/1.5km) 12-16bit 
  (126 bands) (VNIR 15-17nm)     (13.5m/4.5km)   
    (SWIR 17-22nm)         
MIVIS 430-830nm 20 nm 71 deg 2 mr (5m/2.5km) 12 bit 
 (20 bands)      
 1150-1550 nm 50 nm     
 (8 bands)      
 1985-2479 nm 8 nm     
 (64 bands)      
 10 thermal      

 
A number of researchers have begun to exploit the fine spectral structure of imaging spectrometry to map 
urban materials. Bianchi et al. (1996) used Multispectral Infrared and Visible Imaging Spectrometer 
(MIVIS) data to differentiate paving materials in Rome, Italy. Hepner et al. (1998) and Gamba and 
Houshmand (2001) used a combination of AVIRIS and Interferometric Synthetic Aperture Radar (IFSAR) 
to produce improved maps of three-dimensional urban structure in Los Angeles, California, USA. A similar 
study is described by McKeown et al. (1999), who used data acquired over Fort Hood, Texas, USA by the 
Hyperspectral Digital Imagery Collection Experiment (HYDICE; Table 1) to classify urban and natural 
materials and merged this map with stereo panchromatic imagery to map the three-dimensional structure of 
buildings. Ben-Dor et al. (2001) used a combination of an existing spectral library developed by Price 
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(1995) and Compact Airborne Spectral Imager (CASI; Table 1) data acquired over Tel Aviv, Israel, to 
develop an urban spectral library. They compared spectra of common urban materials, then used a subset of 
the library and a Mixture Tuned Matched Filter (MTMF: Boardman et al. 1995) to map materials within 
the CASI scene. In a review chapter on urban imaging spectrometry, Ben-Dor (2001) extended this work to 
include analysis of field spectra acquired using a full range Analytical Spectral Devices (ASD) 
spectrometer, noting that many urban materials sampled had unique “spectral fingerprints” associated with 
specific minerals within the materials. Roessner et al. (2001) used data acquired by the Digital Airborne 
Imaging Spectrometer (DAIS 7915; Table 1) to map urban materials in the city of Dresden, Germany. In 
this study, the authors used a maximum likelihood classifier (a classification procedure that assigns a 
spectrum to a specific class based on the probability that it is a member of that class) to produce a map of 
“pure” spectral endmembers, then used these spectra to seed a new algorithm that unmixed neighboring 
spectra as linear combinations of seed spectra.  Heiden et al. (2001) used HyMap (Table 1) to produce a 
hierarchical thematic classification (see urban concepts below) of urban land cover types and materials and 
provided preliminary spectroscopic analysis of those targets. Herold et al. (2003) evaluated optimal 
wavelengths for mapping urban materials using AVIRIS data acquired over Santa Barbara, CA using the 
Bhattacharyya distance (Jimenez and Landgrebe, 1999) as a spectral separability metric. They compared 
AVIRIS to AVIRIS-simulated IKONOS and Landsat Thematic Mapper (TM) data to evaluate differences 
in map accuracy due to spectral sampling, finding that AVIRIS produced the highest map accuracies for 
many materials, most notably roofs. Recently, Clark et al. (2001) demonstrated the potential of an imaging 
spectrometer for disaster response. In this study, the authors used high spatial resolution AVIRIS data 
acquired over the World Trade Center to map thermal sources, asbestiform minerals and dust and debris 
from the collapse, producing maps of environmental contaminants that are difficult to produce cost 
effectively in any other way. 
 
Whereas current spaceborne systems, such as Hyperion on EO-1 (Ungar et al. 2003) lack sufficiently 
small-scale (fine) spatial resolution for most urban applications, initial studies with airborne systems 
provide a glimpse of the potential power of combining fine spatial resolution with fine spectral sampling. 
The increasing availability of airborne imaging spectrometer data, and potential for finer spatial resolution 
spaceborne data in the future suggest that this technology will continue to grow in importance.  In this 
chapter we provide an overview of some of the techniques used to measure spectra of urban materials, 
discuss unique spectral properties of these materials, spectral analysis techniques commonly employed and 
conclude with some examples from our own work.  

IMPORTANT CONCEPTS 

Radiometry, imaging and imaging geometry 
Imaging spectrometers measure electromagnetic radiation reflected or emitted from the atmosphere or 
surfaces. A majority of imaging spectrometers deployed for terrestrial applications sample reflected and 
emitted wavelength ranges from the ultra-violet (UV) to the Near- Infrared (NIR), covering a spectral range 
from 350 to 2500 nm.  In this chapter, we will focus on the visible near IR (VNIR, or 400-1000 nm; 
Chapter 1) and the short wave infrared (SWIR, 1000-2500 nm; Chapter 1), which is part of the near-IR 
(NIR).  The most common energy source for radiation in the visible and NIR is the sun, although active 
sensors such as Light Detection and Ranging (LIDAR) also operate in this spectral region.  The NIR 
infrared radiation is generally detected by silicon-based detectors and the SWIR radiation is detected by 
indium antimonide (InSb) or lead sulfide (PbS) detectors (e.g., Schott, 1997; Chapter 2). 
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The most useful way of reporting spectral values is in units of reflectance. Reflectance can be defined as 
the ratio of the measured radiance from an object divided by the radiance reflected by a near-perfect 
reflector (e.g., pressed halon). In this manner, reflectance spectra are standardized and thus the spectrum of 
an unknown material can be compared to a known material while removing other factors that modify 
reflected radiation, such as the light source, illumination geometry or effects of external energy sources 
such as scattered radiation. Reflectance can be expressed in a variety of ways depending upon the nature 
and geometry of the incoming and reflected radiation and the type of spectrometer. The two most common 
types of reflectance used in remote sensing include directional-hemispherical reflectance and bi-directional 
reflectance. Directional-hemispherical reflectance is typically measured in the laboratory using a collimated 
beam as the directional source, and an integrating sphere to capture reflected radiation at all possible view 
geometries. Bidirectional reflectance is typically measured in the field or by most imaging spectrometers. 
In this case, incident energy and reflected energy are measured from a specific set of incident and view 
angles. A common geometry used in the field, for example, is to orient the sensor normal to the surface 
(nadir viewing), with the sun positioned at a specific zenith and azimuth angle depending on geographic 
location, time of day and date. In this chapter, all spectra are bi-directional with units of reflectance.  
 
Remote sensing systems do not measure reflectance. Rather, they provide some measure of the amount of 
radiation reflected by an object, which varies depending upon the sensitivity of the instrument, wavelengths 
sampled, lighting geometry and atmospheric conditions. The remote sensing signal also depends on the 
quantization of the recorded signal. Quantization describes the number of bits used to store a number. For 
example; 8 bit quantization stores 256 values, and 12 bit stores 4096. Different remote sensing platforms 
have different inherent quantization (Table 1). 
 
Raw data values from an instrument are typically called Digital Numbers (DNs). Reflectance can be 
derived from DNs provided that light reflected by an object is standardized to light reflected off of a 
material of known reflectance under similar lighting conditions. A common field standard is Spectralon 
(Labsphere, New Hampshire), consisting of pressed halon powder. For laboratory or field instruments, the 
process of converting DNs to reflectance can either be performed automatically by the instrument once a 
reflectance standard is acquired, or calculated later from DNs. The same process, however, cannot be as 
easily implemented using imaging spectrometry data. In this case, a key intermediate step is the process of 
radiometric calibration, in which DNs recorded by the instrument, are converted to units of spectral 
radiance, Lλ, through a series of wavelength dependent instrumental gains and offsets (Lλ = 
Gainλ*DNλ+offsetλ). Instrumental gains and offsets are typically established in the laboratory using a 
calibrated light source and integrating sphere (prelaunch or preflight gains and offsets). However, 
instrumental performance can also be monitored in flight using on-board light sources and the instrumental 
gains and offsets can be adjusted after a flight has occurred using ground targets (e.g. Green and Pavri, 
2002). 
 
Units of spectral radiance vary considerably between sensors (e.g., Table 1). For example, typical units 
reported by AVIRIS are µWcm-2nm-1sr-1. The process of radiometric calibration is particularly important in 
the field of imaging spectrometry, because it is a fundamental requirement for atmospheric correction and 
reflectance retrieval.  
 
Other important components of calibration include spectral calibration, reporting the band center and 
spectral response for each detector. The spectral response for most imaging spectrometers is considered to 
have a Gaussian shape, and is typically described by the Full-Width-Half-Maximum of the band (FWHM: 
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equal to the spectral width of the response function at half the peak response; Fig. 1). The AVIRIS sensor, 
for example, has a nominal FWHM of 10 nm and spectral calibration of 0.5 nm or better with an absolute 
radiometric calibration of 96% averaged across the spectrum (Green et al. 2002). The FWHM of a system 
is commonly referred to as its spectral resolution. However, spectral resolution is more properly defined as 
the minimum spectral separation required to discriminate two spectral features, and thus can be less than or 
greater than the FWHM. For example, the kaolinite doublet is clearly discernable with a FWHM of 20 nm 
or finer, but is no longer evident at a FWHM of 50 or 100 nm (Fig. 1b).    Spectral resolution (the ability to 
resolve a spectral feature) will depend on the FWHM, wavelength location of band centers and sampling 
interval (Fig. 1; Swayze  et al., 2003) 

 

 
 

Figure 1) (a) Plot showing the FWHM and band centers for 10 wavelengths sampled between 2190 and 
2280 nm with a 10 nm FWHM. (b) illustrates the impact of FWHM on spectral resolution. In this example, 
the kaolinite doublet is evident at a FWHM of 10 and 20 nm, but is not evident at a FWHM of 50 and 100 

nm. 
 
Several important aspects of imaging also must be taken into consideration. Imaging spectrometers differ 
from laboratory or field-based spectrometers in that they create an image of spectra. Important spatial 
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components of an imaging spectrometer include the Field of View (FOV, or cross-track width; Fig. 2) and 
the Instantaneous Field of View (IFOV). The FOV describes the angular width imaged by the sensor in the 
cross track direction and is typically reported in degrees or kilometers (Fig. 2). For example, AVIRIS when 
deployed on the ER-2 measures 614 cross track elements, equal to a 32 degree FOV and a nominal swath 
width of 11 km (Green et al. 1998). Cross-track spectra are most typically acquired using two imaging 
strategies, pushbroom systems and whiskbroom systems. In a pushbroom system, each cross-track element 
is sampled by a different set of detectors, thus reducing the need for moving parts and increasing the time a 
set of detectors can image the same piece of ground. In a whiskbroom sensor, each cross track element is 
sampled by the same set of detectors which image different portions of the FOV through the use of 
scanning foreoptics or rotating mirrors. Whiskbroom sensors are easier to radiometrically calibrate than 
pushbroom sensors, but also require more moving parts and have less time to image the same area (thus 
potentially impacting SNR). A common artifact in pushbroom sensors is vertical striping in images, due to 
cross track differences in the radiometric calibration of detectors. Examples of pushbroom systems include 
CASI and HYDICE while AVIRIS, HyMAP and the DAIS7915 are whiskbroom systems (Table 1). 

 

 
 

Figure 2) (a) Typical imaging geometry including the sensor, FOV, IFOV, GIFOV, across track and along 
track sampling. (b) Typical illumination geometry, showing the solar zenith, ? 0,  and view zenith, ? v, as 

they vary across the image from a forward scattering (3), to nadir (2) and backscattering (1) geometry.  Tall 
buildings will be darkest in the forward scattering view direction because the sensor is imaging shadows 

cast by the buildings. 
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The IFOV describes the angle subtended by a single detector element and is typically reported in 
milliradians. When the IFOV is multiplied by sensor height, this is called the Ground Instantaneous Field 
of View (GIFOV; Fig. 2). The IFOV of AVIRIS is 1 milliradian, producing a GIFOV of 20 m from a 
height of 20 km. For urban remote sensing probably the most important sensor attribute to consider is the 
GIFOV. As is true for spectral resolution, spatial resolution is commonly used synonymously with the 
GIFOV, but is more properly defined as the minimum distance between two objects required to 
discriminate them. As such, spatial resolution varies depending upon atmospheric conditions and the 
contrast between two objects on the ground.  
 
Special consideration must be given to the interplay between the bidirectional reflectance of a surface, and 
imaging and illumination geometry (Fig. 2b). The manner in which reflectance of an object varies 
depending on solar and view zenith can be described as a function called the Bidirectional Reflectance 
Distribution Function (BRDF; Schott, 1997). Surfaces can be categorized as Lambertian (scatters equally in 
all directions), backscattering (preferentially scatters light back to the source), forward scattering 
(preferentially scatters light away from the source), specular (mirror) or some combination of these. Most 
rough surfaces, such as shrubs, trees and buildings, backscatter radiation, whereas smooth surfaces like 
water reflect radiation in a specular manner.  Dry beach sands and sidewalks scatter radiation in a near 
Lambertian manner. Depending on the orientation of a flight line and the solar azimuth, one flank of the 
imaging swath may represent either a forward or backscattering view geometry. This becomes important 
because viewing geometry can modify the overall brightness and spectral properties of a surface. For 
example, the lighting geometry shown in Figure 2b will result in a strong gradient from the right to left, 
with the lowest radiance in the forward scattering view (where the sensor is imaging shadows cast by 
buildings) and highest radiance in the backscattering view (where the shadows are partly blocked by the 
buildings). The BRDF of some materials varies spectrally. For example, vegetation is a backscatterer in the 
visible part of the spectrum, but more lambertian in the NIR (Deering, 1989). The spectral dependence of 
the BRDF for most urban materials is poorly known.  
 
 Viewing geometry can be particularly problematic when mosaicking overlapping flight lines. The most 
ideal flight geometry is to have the aircraft flying either towards or away from the sun, because this gives 
each side of the swath the same viewing geometry. However, this ideal is not always achievable. For 
example, in our own work in Santa Barbara, California, USA, the east-west orientation of the Santa Ynez 
range forces east-west flights. As a result, two mosaicked east-west AVIRIS flights can produce differences 
of up to 32 degrees in view zenith in the overlap region.  
 
Urban terminology 
Additional important concepts include the nature of applications in urban areas. Common terminology in 
urban remote sensing distinguishes between land-cover (the material composition) and land-use (how the 
land is used). Remote sensing allows us to map land-cover, but only infer land-use. Land-cover categories 
are typically placed in a hierarchical classification scheme developed by Anderson et al. (1976), in which 
broad land-cover classes are considered Level 1 and only require relative coarse spatial resolutions (20-100 
m). Level 4 requires sub-meter resolution, and involves very detailed use information (Jensen and Cowen, 
1999). As an example, the designation urban, or “built-up” refers to an Anderson Level 1 class, subdivision 
between residential and commercial uses would be Level 2, a distinction between single and multifamily 
residential would occur at Level 3 and Level 4 might entail separating retail from office use for a 
commercial class. The hierarchical scheme developed by Anderson et al (1996) is commonly modified to 
suit the needs of an application. Herold et al. (2003) adhered to Anderson Levels 1 and 2 in their study, but 
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modified Level 3 to include materials (i.e., wood shingle versus composite shingle) and Level 4 as a 
subdivision within a type of material (i.e., black composite shingle).  
 
Another powerful classification scheme proposed for urban areas is the VIS model (Vegetation-Impervious 
Surface-Soil; Ridd, 1995), in which roofs and road surfaces would be categorized as impervious surfaces, 
whereas an open lot or park might be vegetation or bare soil. Imaging spectrometry has its greatest 
potential in identifying materials (Level 3 or 4) and improving separation at Level 2.  

EQUIPMENT AND SAMPLING 

Overview 
The quality of spectral data is highly dependent upon the quality of the instrumentation. Important 
considerations when evaluating an instrument include spatial, spectral, and stability concerns. Spatial 
considerations include GIFOV as discussed previously.  Spectral considerations include the wavelength 
range sampled, number of wavelengths sampled within this range and the FWHM (Table 1). Additional 
considerations include the stability of spectral calibration and potential of artifacts, such as second-order 
contamination or out of band transmission , both of which entail measuring radiation from outside of the 
wavelength region of interest. For example, the use of a grating to disperse light can lead to second-order 
contamination, whereas the FWHM produced by a prism can vary as a function of the wavelength sampled 
(a slit can be used to compensate for wider dispersion). Many of these factors vary depending upon the 
method of light dispersal and the arrangement of detector arrays within the instrument. Precise knowledge 
of the spectral properties of an instrument i s critical if spectra are to be convolved to a variety of sensors 
with differing spectral response functions. 

 
Radiometric considerations include radiometric stability, quantization and signal to noise ratio (SNR: 
alternatively instrumental noise can be expressed as a Noise Equivalent Delta Radiance, or NEDL). An 
ideal instrument is radiometrically stable, and has sufficiently high enough SNR, and quantization to 
discriminate two materials based on subtle differences in reflectance (Swayze et al., 2003). AVIRIS, for 
example, uses 12 bit quantization and had a SNR that exceeded 1000:1 in the visible, and approached 500:1 
at 2200 nm in 2001 (Green et al. 2002).  
 
Instrumentation 
Spectra are typically acquired at three scales, in the laboratory from destructive  samples (i.e., leaves 
harvested in the field and brought into the laboratory), in the field (termed in-situ by Ben-Dor, 2001) or 
from an imaging platform. Because laboratory-based instruments have been covered in detail in other 
chapters, little will be said here. Typically laboratory based measurements are made over a fairly small 
sample, with a field of view on the order of 0.01-2 cm2. As stated previously, laboratory-based instruments 
typically measure directional-hemispherical reflectance. These instruments have the advantage of providing 
controlled conditions and the highest quality reflectance, but also require the transport of surfaces into the 
laboratory environment. In many cases, this is infeasible. 
  
A number of high quality field instruments are available. In our own research, we have used the Spectron-
SE590, ASD Personal Spectrometer II, GER Field Spectrometer Mark IV, and ASD full range instrument. 
In addition to considerations of instrumental performance, other factors become important in the field, such 
as the weight of the instrument, its durability, scan time, software and number of documented artifacts. In 
this chapter, all of the field-based spectra were acquired using an ASD full range instrument. This 
instrument samples between approximately 350 and 2500 nm at a spectral sampling interval of 1.4 nm in 
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the VNIR with a FWHM of 3-4 nm and interval of 2.2 nm in the SWIR with a 10-12 nm FWHM. Spectra 
can be collected over a range of IFOVs, controlled by the foreoptics (a device that restricts the IFOV), 
which range from 1 (highly restricted) to 25 degrees (no foreoptics). Output spectra are resampled to a 1 
nm interval. Scan times are typically rapid, allowing spectral averaging of 10 or more spectra in a few 
seconds. Spectra are sampled using a grating, a silicon-based detector array for 350-1000 nm and two 
InGaAs SWIR detectors that sample from 1000 to 2500 nm (http://www.asdi.com). The SNR of the 
instrument varies depending on the illumination source and wavelength sampled, with the lowest SNR 
found within strong water vapor absorption regions (1400 and 1900 nm), at the longest wavelengths (2500 
nm) and at the transition zone between the VNIR and SWIR1 detectors at 1000 nm. A contact probe is also 
available for small samples, which avoids the need of solar illumination through an internal light source. 
Although models vary, the instrument is generally portable with high performance.  

 
Sampling strategy 
A key consideration in the field is sampling strategy. Sampling choices include the choice of foreoptics, 
height above the target, frequency that spectra are standardized, time of day, acceptable atmospheric 
conditions and number of samples for each target. Ideally spectra should be acquired when the solar zenith 
is lowest, typically within +/- 2 hours of solar noon under clear sky conditions, although the range of 
acceptable times will depend on latitude, time of year and the frequency at which standards are measured. 
For example, in Santa Barbara (34N latitude), if standards are acquired every five minutes, acceptable 
spectra can be acquired within +/-3 hours of solar noon in July, but only within +/- 1.5 hours of solar noon 
in January (this assumes a 5% change in radiance measured between standards is acceptable). At higher 
latitudes, the acceptable range will be far shorter during the winter, but may be greater during the summer. 
Reflectance standards should also be acquired under the same illumination conditions as the surface to 
avoid the impact of side scattered light. For example, if a target is measured in close proximity to a tree, but 
the standard is measured away from the tree, the lighting environment of the target will include higher 
levels of NIR than the standard, thus producing an anomalous spectrum (side scattered radiation is also 
called the adjacency effect). Adjacency effects will be most significant in rough urban environments. 
In urban environments sampling strategies can be complicated. The simplest sampling problem involves 
horizontal surfaces, such as roads, parking lots, sidewalks or lawns. In this instance, the height of the 
instrument and number of measurements required will depend on the variability of the surface and the 
objectives of the measurements. For example, a relatively uniform, newly surfaced parking lot may require 
very few measurements to capture its spectrum. In contrast, if the objective is to quantify very fine scale 
variability, such as the impact of cracks on a road surface, many measurements may be required with the 
instrument positioned close to the surface (a few tens of cm). In our case, we typically sample road surfaces 
along transects at a fixed interval with the instrument positioned one meter above the surface. Transects 
range in length from less than 20 m to up to 100 m depending on the extent of the surface. Standards are 
acquired approximately every five minutes to avoid major changes in lighting between measurements. 
Because considerable variation exists in roads due to aging, building material and wear, a comprehensive 
library requires representatives from each of these categories.  
 
Vertical structures and non-horizontal surfaces, which are common in urban environments, provide 
considerably greater challenges. For example, to sample roof spectra the instrument may have to be 
transported to the roof. Instrument height will vary depending upon the degree of purity desired. If the 
objective is to sample one shingle, the height and foreoptic must be selected to restrict the field of view to 
the small illuminated portion of the shingle. If the objective  is to capture multiple shingles, or shadows cast 
by a shingle, a larger foreoptic or higher sensor height must be selected. To capture variability within a 
single roof, multiple spectra may be required on the same roof aspect, or spectra may be required on 
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different aspects on the same roof. In our own work, spectra were typically acquired from multiple shingles 
on at least four different roof aspects. Because of the non-lambertian behavior of most of these structures, 
reflectance will vary throughout the day, even if the aspect is constant. Vertical surfaces, such as plants add 
additional complications, such as variable heights of surfaces and considerable variation in shadowing, leaf 
orientations, branches etc. In order to characterize this variability, we typically sample multiple spectra 
within a single plant, and multiple plants within a species (Roberts et al. 2003).    
 
Figure 3 illustrates a typical example of collecting spectra of urban materials using a field spectrometer. In 
this example, a researcher is collecting spectra of a concrete surface located within a parking lot in Goleta, 
California in late May, 2001. Spectra were sampled along a transect at fixed intervals of a few meters. At 
each interval five replicates were collected, each replicate consisting of the average of 10 spectra measured 
by the instrument.  Spectra were originally collected in raw DN mode, standardized with a Spectralon panel 
(acquired at the start and end of the transect), then later processed to reflectance.  
      

 
 

Figure 3) A researcher collecting spectra of a concrete surface located in a parking lot west of Fairview, 
Goleta California. Spectra measured along a transect over the surface are shown to the right. 

 
If possible, photographs should be acquired and detailed metadata recorded for as many spectra as is 
feasible (Fig. 4). Metadata recorded for most of our urban spectra included CCD images of surfaces, GPS 
location, a short description of the material, time of day, a quality assessment of spectra and any additional 
descriptive terms such as age of surface, heterogeneity, surface quality etc (Fig. 4). In this manner, detailed 
variation within the FOV of the instrument and specific surface properties are described photographically, 
while other important descriptive information is also recorded. 
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Figure 4) Typical metadata and digital images collected during the development of the Santa Barbara urban 

spectral library. 
 
Low-flying airborne platforms offer the potential of acquiring a large number of spectra over many targets 
in very little time. Ben-Dor et al. (2001) and Herold et al. (2003) describe strategies in which high-
resolution imaging spectrometry data were used to build a spectral library of urban materials. A growing 
number of imaging spectrometers are available that provide sufficiently fine spatial resolution to build a 
spectral library and map urban materials (Table 1). In this table, we focus only on imaging spectrometers 
that have recently been used to map urban areas. Key attributes listed in the table include the wavelength 
range, number of bands, FWHM, FOV, IFOV, GIFOV and quantization. We report nominal values of 
FWHM and, where it is reported, average spectral sampling intervals (in nm). The FOV, IFOV, FWHM 
and wavelengths ranges are typically fixed by the spectrometer.  In contrast, GIFOV varies considerably 
depending on aircraft height, ranging from a fine GIFOV of 0.5 m, sampled by CASI deployed on a 
helicopter, to 20 m for DAIS7915 deployed at an altitude of 6 km. In some instances, instruments are 
programmable. CASI, for example, can be programmed in mapping mode, providing 19 bands for a cross 
track image of 512 elements, or spectral mode in which 288 bands are sampled at fixed spacings across the 
swath. Most urban studies using imaging spectrometers have utilized low altitude platforms (e.g., Mckeown 
et al. 1999; Ben-Dor et al. 2001; Roessner et al. 2001; Herold et al. 2003) and GIFOVs on the order of 4 m 
or less. The FWHM and spectral sampling are also potentially important. Although few studies have 
evaluated the importance of spectral information for urban areas (see Herold et al. 2003 for an exception), 
material specific vibrational absorptions in the SWIR suggest that sensors such as CASI, which lack these 
wavelengths, may have difficulty in discriminating certain types of materials. However, many unique urban 
spectral features are still present in the visible portions of the spectrum (Ben-Dor, 2001; Herold et al. 2003; 
Swayze et al. 2003;) suggesting that imaging spectrometers that do not sample the SWIR, are still likely to 
be able to map a large diversity of materials in these environments. A more detailed review of most of the 
sensors and several more is provided by Kruse (1999). 
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Key considerations when using imaging spectrometry data include time of acquisition, orientation of the 
flight, atmospheric conditions, GIFOV and quality of georeferencing. As stated previously, flight 
orientation can also be critical. Flights that parallel the solar azimuth are preferred over flights that are 
perpendicular to the azimuth. When possible, field spectra should be acquired either close to the time of 
acquisition, or from temporally invariant targets for use in reflectance retrieval (Clark et al., 2002).  

IDENTIFICATION OF PEAKS AND/OR QUALITATIVE ANALYSIS AND/OR 
SPECTRAL MATCHING TECHNIQUES 

The spectra of urban materials are dominated by the same electronic and vibrational absorption processes 
that create the spectra of plants and minerals. However, because of the way urban materials are altered by 
manufacturing processes and the way they are combined, it is not always easy to identify a specific 
absorption feature, and relate it to a diagnostic absorption process. Furthermore, man-made materials 
generate additional chemical absorptions which are not readily found in natural materials. A good example 
is paint, which has no analog in the natural world. Finally, urban spectra are further modified by processes 
that alter the original material. For example, road surfaces and roofs change with aging, leading to changes 
in their spectra. Urban materials can also be altered by coatings such as algae, dirt, dust or rubber tire marks 
found on roads, bridges and road paints. Remote sensing images of urban areas commonly contain pixels 
that represent a mixed spectral signature. 
 
The same general principles developed for mineral spectroscopy can be applied the interpretation of urban 
spectra. Electronic absorption processes are typically high energy, involving the transition of an electron 
from one valence state to another, or to a non-valence state such as a conduction band (Clark, 1999). The 
high energy of these interactions typically results in strong absorptions in the UV, visible and shorter 
wavelength portions of the SWIR. Typical band shapes are broad, such as chlorophyll bands centered at 
450 and 680 nm or iron-oxide absorptions, centered at 880 nm. The former are due to conjugate bands in 
the chlorophyll molecule, and the latter are due to crystal field absorptions in iron-oxides (e.g., Clark, 
1999).  
 
Vibrational bands represent lower energy absorptions occurring when the energy of photons matches the 
frequency of vibration of molecular bonds (Q=hν, where Q is radiant energy, in Joules, h is Planck’s 
constant, and ν is frequency). Examples of molecules that produce vibrational absorptions within the NIR 
include water, hydroxyl, carbon dioxide, carbonates, sulfates and methane (Clark, 1999). In many 
instances, the fundamental frequency of absorption is beyond 2500 nm, but overtones and combinations 
can produce higher frequency vibrations that produce absorptions within the SWIR.  Vibrational bands 
occur at longer wavelengths than those due to electronic processes, and typically are less broad. For a more 
detailed discussion of spectroscopy and absorption processes, see Clark, 1999. 
 
Urban materials commonly vary regionally due to local resources, such as the availability of marble, wood 
or limestone for construction or due to local customs which can vary the ingredients used in roof materials, 
tile, brick and concrete aggregates (Ben-Dor, 2001; Hepner, Verbal commun. 2004). For example, many of 
the spectra published by Ben-Dor (2001) for Tel Aviv, show prominent calcium carbonate absorptions that 
are nearly lacking in the Santa Barbara area. The potential impacts of local customs and source materials 
should be taken into account when developing regional spectral libraries and caution should be used when 
exporting a spectral library from one part of the world to another.  
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Example spectra from the Santa Barbara area illustrate electronic and vibrational absorptions (Figs. 5a-d 
and 6a-d). Unless otherwise stated, spectra were acquired within +/- 2 hours of solar noon from heights of 1 
m or less above the surface. Spectra were typically collected by setting the ASD in raw DN mode, setting 
the instrument to average 10 spectra per measurement, and collecting 5 replicates per sample. Each 
replicate was standardized to reflectance using a Spectralon standard acquired within 5 minutes of the 
sample. Reflectance spectra for each replicate were then assessed for quality, and averaged to produce a 
single spectrum for each sample. Figures 5a-d show a selection of roofing materials, bare soil, non-
photosynthetic vegetation (NPV: Roberts et al. 1993) and residential grass. Figure 3a shows six types of 
composite shingle with relatively low reflectance spectra (5 to 20%) that in many cases are nearly 
featureless. Exceptions are the dark grey tile (1), which shows a minor peak in green wavelengths (520 
nm); and the light tan/orange tiles (3) and light grey shingle (4), which show evidence of the presence of 
carbonates in the mixture (~2330 nm). Figure 5b shows a selection of wood shingle. All of these spectra 
show vibrational bands centered around 2100 and 2300 nm due to the presence of lignin and cellulose. 
Reflectance differences between spectra are in part due to different ages and degrees of weathering. Three 
wood shingle spectra show subtle absorptions due to the presence of chlorophyll in moss, algae and lichens. 
Similar findings are reported by Ben-Dor (2001), who points out the important role of coatings on 
modifying urban spectra. Ligno-cellulose bands are particularly important in helping distinguish wood 
shingle from bare soil or other roof types.  

 
Figure 5) Spectra of typical roof materials and non built-up cover types from the Santa Barbara ASD urban 
spectral library. (a) shows typical composite shingle spectra, (b) shows concrete tiles, (c) wood shingle and 

(d) a variety of non-built up surfaces. Note: The small-scale variations at ~950 nm are an artifact of the 
field spectrometer and represent the area of transition/overlap between the sensor materials. Other sensor 

induced spectral variations relate to the “noisy” signal in the SWIR II region above 2300 nm. These 
artifacts are present in all spectra and appear strongly in low reflectance targets. The major water vapor 

absorption bands are interpolated. Note the different scales in the y-axis. 
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Figure 5c shows 7 spectra of red tile (1), calshake (2: a synthetic inorganic substitute for wood shingle), 
and cedarlite (3:a concrete substitute for wood shingle). Strong visible light absorption in red tile and 
absorptions in the NIR represent iron-oxide absorption features centered at 520 nm, 670 nm and 870 nm. 
Liquid water and hydroxyl absorptions, typically found in clays, are lacking in fired brick and the 
reflectance is higher towards longer wavelengths due to the loss of water in the production firing process 
(Heiden et al. 2001). A comparison of red tile from Santa Barbara, to spectra published by Ben Dor (2001), 
demonstrates remarkable similarities in the composition of red brick in Israel and Santa Barbara. Synthetic 
wood shingles (consisting of concrete or cement), although resembling wood shingle in the visible portions 
of the spectrum, are nearly featureless in the SWIR.  
 
Figure 5d shows spectra acquired from various non-built up urban surfaces. The most prominent spectral 
features are evident in the green residential grass spectrum (1), which shows pronounced chlorophyll 
absorptions at 450 and 680 nm, a green peak centered at 550 nm, and vibrational water absorptions at 980, 
1200, 1400 and 1900 nm. The highest reflectance was observed in landscaping bark (4), which showed 
prominent ligno-cellulose bands in the SWIR. Spectra of bare soil were moderately featureless, showing 
only a general increase in reflectance from the visible to SWIR and a subtle absorption centered at 2100 
nm. Dead pine needles (5) show prominent ligno-cellulose bands with some of the lowest reflectance 
measured for NPV. 

 
 
Figure 6) Spectra of typical materials of transportation surfaces from the Santa Barbara ASD urban spectral 

library. (a) shows asphalt spectra, (b) shows parking lots, (c) concrete sidewalks and bridges and (d) 
gravels. 
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Figure 6a-d shows spectral variations in a variety of transportation materials. Figure 6a shows the impact of 
aging and condition on asphalt spectra. New asphalt surfaces (1) have the lowest reflectance with increased 
reflectance towards 2100 nm and an overall convex shape. The most prominent absorption features occur 
around 2350 nm. Aging and deterioration result in a general increase in asphalt reflectance in all parts of 
the spectrum. The natural aging of asphalt is caused by reaction with atmospheric oxygen, photochemical 
reactions with solar radiation, and the influence of heat, resulting in the loss of oily components by 
volatility or absorption, changes of composition by oxidation, and changes in molecular structuring (Bell, 
1989). Short-term losses of oily compounds produce dramatic differences between new and fresh asphalt 
(2). In a relatively short period of time, newly lain asphalt nearly doubles in reflectance with reduced 
expression of the 2350 nm absorption. Long-term aging due to oxidation and photochemical reactions 
produces increasing reflectance in older, more damaged surfaces due to continued loss of oily components 
and the loss of the sealing tar surface and the accumulation of dirt and dust. The oxidation process is clearly 
shown by the appearance of iron-oxide absorption features at 520 nm, 670 nm and 870 nm, especially in 
spectra 4 and 5. In general, the distinct spectral variations that represent the aging and condition of asphalt 
surfaces represent an interesting spectral contrast that might be used to map road age and specific 
conditions using imaging spectrometry. The most featureless, low reflectance spectra were located in 
parking lots (Fig. 6b). Reflectance in parking lots varied from an average around 8% to a high around 13%. 
Spectral features are completely absent in many of the spectra.  

 
 

Figure 7) Spectra of typical paints from the Santa Barbara ASD urban spectral library. 
 
Spectra of dry concretes are shown in Figure 6c. The highest reflectance was observed in fresh concrete, 
which showed only subtle absorptions in the SWIR. Material aging and degraded conditions resulted in an 
overall decrease in reflectance. Decreasing surface reflectance most likely reflects the impact of dust and 
dirt accumulating on the surface. Older concrete surfaces (1) also show subtle absorptions potentially due 
to iron-oxides and clay and carbonate absorptions in the SWIR. Low reflectance on the concrete bridge was 
largely due to darkening by skid marks and rubber left by tires. Figure 6d shows spectra of two gravel 
surfaces, gravel along the side of a road (2) and a gravel drive way (1). Prominent vibrational bands are 
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evident in the SWIR in road gravel, most likely due to the presence of calcium carbonate within the rock 
mix.  
 
Some of the most distinctive spectra have no natural analogs (Fig. 7). This figure shows the spectra of 
paints commonly used on road surfaces, parking lots and curbs in the USA. Spectra include fresh white 
paint (1), old white paint (3), red paint (2), fresh and old yellow paint (4 and 5) and blue paint (6). A 
common feature to all paint spectra is a broad absorption covering several hundred nm in the SWIR. As in 
concretes, older paints typically show a decrease in reflectance. Blue paint shows a striking similarity to a 
mixture between asphalt and trees, suggesting some potential for confusion.  

 
Figure 8) a) Spectra of dust collected from the vicinity of the World Trade Center and b) of chrysotile 

asbestos. Modified from original figures published in Clark et al. (2001). 
 
Figure 8 shows an example of gypsum and the asbestiform mineral chrysotile (from Clark et al. 2001). 
These spectra were collected as part of rapid emergency response after the World Trade Center disaster in 
an effort to map potential environmental contaminants (Clark et al. 2001). Figure 8a shows several 
prominent vibrational bands, including a strong liquid water band centered at 1.94 ? m, a weaker water/OH 
absorption at 1.45 ? m and a triplet of diagnostic absorptions for gypsum between 1.42 and 1.54 ? m, 
probably derived from crushed wall board (Clark et al. 2001). Clark et al. (2001) also cite subtle evidence 
for portlandite or muscovite, minerals commonly found in concretes. Figure 8b shows the spectrum of 
chrysotile, an asbestiform mineral with prominent iron absorptions in the VNIR, and prominent vibrational 
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bands in the SWIR. A key objective of the analysis of AVIRIS images acquired over the World Trade 
Center in September, 2001, was to determine whether abestiform dust was present at harmful levels based 
on the presence of chysotile- specific absorption features in image data (see below).  

 

QUANTIFICATION AND/OR SPECTRAL MANIPULATION AND/OR DATA 
PROCESSING 

Data preprocessing 
As stated previously, spectra are most readily interpreted when they are transformed into reflectance. The 
process of converting measured radiance or DNs to reflectance has been called reflectance retrieval. 
Techniques for retrieving surface reflectance can be roughly divided into two major categories, relative 
reflectance retrieval techniques and absolute reflectance retrieval techniques. The most common approach 
for relative reflectance retrieval is called the empirical line  (Roberts et al. 1985). Using this approach, two 
or more targets of known reflectance are located in an image. A linear equation is established for each 
wavelength by regressing known reflectance against measured radiance or DNs. The advantage of an 
empirical line calibration is that radiometric calibration (conversion of DNs to radiance) is not a 
requirement. However, it does make the assumption that the atmosphere is uniform, resulting in significant 
artifacts in strong atmospheric bands (e.g., water vapor, CO2) if a range of elevations are present in the 
scene (Roberts et al. 1993).  
 
Absolute approaches retrieve surface reflectance based on physical principles, in which measured radiance 
is typically compared to radiance generated by an atmospheric radiative transfer model, such as the 
Moderate Spectral Resolution Atmospheric Transmittance Algorithm and Computer Model (MODTRAN: 
Berk et al. 1999). This general approach is commonly referred to as forward-inversion. Accurate 
radiometric calibration of the data is a fundamental requirement of forward-inversion. One of the greatest 
sources of error in forward-inversion is spectral calibration. For example Green (1998), documents 
relatively large errors in reflectance retrieval, associated with spectral calibration errors of a few nm or less.  
A number of authors have developed models that have the capability of retrieving surface reflectance from 
imaging spectrometry data. For example, Green et al. (1993) describe a model in which the program 
MODTRAN is used to build a look up table of radiance modeled with different amounts of atmospheric 
water vapor. Residuals between measured and modeled radiance are calculated and the best model is 
selected that minimizes the residual within the spectral fit region. This model also includes variables that 
account for the expression of liquid water in spectra, generating maps of water vapor, liquid and surface 
reflectance. Similar models have also been developed by Gao et al. (Atmospheric Removal (ATREM): 
1993; 1997) and are commercially available such as ACORN (Atmospheric Correction Now, IMspec 
Associates). Surface reflectance retrieved through forward-inversion often shows minor artifacts along the 
flanks of strong water vapor bands and can show systematic errors in reflectance. To minimize these 
artifacts, a single reflectance spectrum of a ground target can often be used to compensate for differences 
between measured and modeled radiance (Clark et al. 2002). Figure 9 shows an example of such an 
approach, in which reflectance measured from one ground target in Canada, was used to adjust retrieved 
reflectance for a large number of AVIRIS scenes acquired during the Boreas mission in central 
Saskatchewan and northern Manitoba in 1994 (Roberts et al. 1999). High frequency artifacts can also be 
suppressed in the absence of ground data using spectral polishing approaches such as EFFORT (Boardman, 
1998).  Errors in retrieved water vapor, can seriously impact surface reflectance by generating artifacts 
along the margins of water vapor bands as shown by Green (2001).  
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Figure 9) Schematic figure showing the process of retrieving surface reflectance from AVIRIS data. The 

image to the left was acquired during the 1994 Boreas campaign. (a) shows a radiance spectrum measured 
by AVIRIS from a field calibration target. (b) shows the first iteration of reflectance retrieved using the 

approach described by Green et al. (1993). (c) shows surface reflectance calculated using a field spectrum 
to correct for artifacts. 

 
Reflectance retrieval in urban areas can be further complicated by atmospheric pollutants, which typically 
do not have a uniform distribution in space and can vary throughout the day. Atmospheric pollutants most 
typically impact scattering at shorter wavelengths. In most absolute reflectance retrieval approaches, they 
are accounted for by varying the atmospheric visibility, but not allowed to vary spatially. Thus spatially 
varying scattering due to atmospheric pollutants is typically not corrected. 
     
Another common preprocessing step is georectification. Unlike spaceborne data, aircraft data are subject to 
considerable distortion due to the instability of low altitude platforms. In order to make maps and relate 
them to ground reference data, it is critical that aircraft-related and ground-related distortions are removed. 
One common approach is to use a “rubber-sheet” stretching approach and numerous tie points between a 
base map and measured image (Wiemker et al., 1996). Unfortunately, this approach is not practical for 
highly unstable platforms, such as the Twin-Otter, which is used to acquire high spatial resolution AVIRIS. 
Fortunately, recent improvements in on-board navigation information and recent software development 
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have made it possible to georectify images to within a few pixels (~10 m for a 4 m GIFOV) in a near-
automated fashion (Boardman, 1999).  
 
Several techniques have also been developed for spectral preprocessing. One of the most common 
approaches for data reduction is the Minimum Noise Fraction (MNF) transform (Green et al. 1988). The 
MNF transform is similar to a Principal Components Analysis, in which a population of spectra is 
transformed by a set of orthogonal vectors that account for progressively less of the spectral variability. The 
first few MNF bands typically account for a majority of the variance, and higher MNF bands are dominated 
by sensor noise. As spectral dimensionality increases, the number of MNF bands required to account for 
signal increases, approaching over 30 dimensions in some cases. Many spectral analysis techniques (see 
below) are applied to data after they have been reduced by an MNF transform. 
 
Another common spectral preprocessing technique is called continuum removal (Clark and Roush, 1984). 
The continuum can be defined as a spectrum that lacks all major high frequency absorptions. Mustard and 
Sunshine (1999) define it as “the collective properties of spectral regions exhibiting smoothly varying 
spectral properties that, taken as a whole, define the upward limit of the general reflectance curve for a 
material”. Continua, which vary from one spectrum to the next, are typically fit by connecting regions of 
peak reflectance, and bridging absorption features with a tangent line. Continuum removal involves 
calculating the ratio of the measured spectrum, divided by the spectrum of its continuum. Continuum 
removal is useful in that it accentuates more subtle absorption features, and normalizes brightness 
differences. However, it may also be problematic if the spectral response of the mineral is weak and 
depends on the wavelength bounds used to define the continuum. 
 
Spectral matching techniques  
A large number of tools have been developed for matching a library of known spectra to spectra measured 
in the field or by an imaging spectrometer. Currently, the most common approach for spectral matching in 
urban remote sensing is the use of standard supervised classification techniques, in which spectra are 
acquired from a number of known targets (known as training sites) and used to determine the statistical 
properties of each class (Richards, 1993).  Examples in which a maximum likelihood classifier (MLC) was 
applied to urban imaging spectrometry to map urban land cover include McKeown et al. (1999), Roessner 
et al. (2001) and Herold et al. (2003). Once training sites have been established, training statistics are 
extracted (typically a mean and variance) for each class, then the classifier is used to assign a pixel to one 
of several classes based on its statistical similarity to a particular class.  
Other approaches more explicitly designed for the analysis of imaging spectrometry data have also been 
designed. Examples include the Spectral Angle Mapper (SAM; Kruse et al. 1993), in which the angle 
between a reference spectrum and an unknown is calculated as the inverse cosine of the product of the 
transpose of one vector, multiplied by the other, divided by the product of the lengths of the two vectors: 
 

θ = cos-1[aTb/(||a||*||b||)] 
 
where θ  is the angle between two vectors, a and b, and ||a|| and ||b|| are each vector lengths. The key to this 
approach is that any spectrum can be treated as a vector in n-dimensional space emanating from the origin. 
To map a material, a spectrum is selected as a reference, then the angle between this reference and a 
spectrum in the image is calculated. To map multiple materials, multiple references are selected and 
unknowns are assigned to the reference that produces the smallest angle. Spectral angles that exceed a pre-
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defined threshold (say 2 degrees) for all reference spectra are commonly masked out. McKeown et al. 
(1999) used SAM in addition to a MLC in their analysis. 
 
A number of techniques have been developed in which spectra are modeled as linear combinations of 
vectors. One of the most common approaches is Spectral Mixture Analysis (SMA), in which a mixed 
spectrum is modeled as the sum of “pure” spectra, each weighted by the fraction of the material within the 
field of view. SMA is a powerful approach, in that it provides estimates of surface abundance as well as 
composition. However simple SMA, in which one set of endmembers is used to “unmix” an entire scene is 
poorly suited for urban areas due to the large number materials within the scene. To compensate for these 
limitations Roberts et al. (1998) have developed Multiple Endmember Spectral Mixture Analysis 
(MESMA), in which the number and types of endmembers are allowed to vary per pixel. Although 
MESMA has been primarily applied to natural systems, early applications in urban areas seem promising 
(Gardner et al. 2001). An alternate approach was used by Roessner et al. (2001) to account for considerable 
spectral variability in an urban area. Roessner et al. (2001) used a MLC to first identify relatively unmixed 
spectra, which could then be used as candidate endmembers. Once identified, these spectra were used as 
seeds to unmix neighboring pixels and calculated mixtures.  
 
Several alternative linear transformations have been proposed for the analysis of imaging spectrometer 
data. Harsanyi and Chang (1994) first introduced the concept of orthogonal subspace projection, in which 
spectra are transformed into a set of orthogonal vectors. Vectors are calculated such that spectral features 
that are not of interest produce a low score, and spectra that match the material of interest produce a high 
score. Variations on orthogonal subspace projection include Matched Filters, Foreground/Background 
Analysis (Smith et al. 1994), and Mixture Tuned Matched Filters (MTMF: Boardman et al. 1995). Ben-Dor 
et al. (2001) and Ben-Dor (2001) use a MTMF and ten endmembers to classify CASI data acquired over 
Tel-AVIV, Israel. We provide an example using a Matched Filter later in the chapter. 
  
Spectral fitting represents another powerful analysis tool. An example of this is Tetracorder (Clark et al. 
2003), in which spectra first undergo continuum removal, then a non-linear least squares approach is used 
to choose the best candidate among a series of reference materials based on the highest fit.  Specific 
minerals are typically mapped using fit regions tailored to provide the best discrimination for that type of 
absorption feature. For example, iron-oxides are typically mapped using a different fit region than clays. 
Clark et al. (2001) provide an example of Tetracorder, in which references samples of various dusts and 
asbestiform minerals are used to map candidate materials in the vicinity of the World Trade Center disaster.  

EXCEPTIONAL ASPECTS OF THE TECHNIQUE 

The fine scale of urban objects and the high diversity of surface materials severely complicate the use of 
remote sensing in these areas. Currently, spaceborne imaging spectrometers lack sufficient spatial 
resolution to be used for many urban applications.  In contrast, airborne systems commonly meet a 
minimum standard of 5 m or less and provide considerably greater spectral detail than aerial photography 
and broad band images. Currently the major limitation on the use of imaging spectrometry is cost and the 
availability of data.  
In many instances, the added spectral information provided by an imaging spectrometer does not provide 
sufficient benefits to justify its use place of more inexpensive broad band or photographic sources. 
However, in the instance where a specific wavelength region is required to map a material based on a 
particular absorption feature, the use of an imaging spectrometer is justified. Examples discussed in this 
chapter include: 
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Separation of wood shingle from other roof types 
Sensors such as IKONOS and Quickbird are incapable of mapping these roof types at high accuracy. In 
contrast, imaging spectrometers can definitively identify these roof types based the presence of ligno-
cellulose bands in the SWIR. According to Herold et al. (2003), a broad band system such as Landsat TM 
can map wood shingle, although the lack of spectral detail in the SWIR is also likely to lead to greater 
confusion with other materials.  
 
Environmental contaminants 
Clark et al. (2001) demonstrated the potential of an imaging spectrometer for mapping environmental 
contaminants in the aftermath of the World Trade Center disaster. In the case where diagnostic absorptions 
are required to map a specific mineral, an imaging spectrometer may be the only practical means. 
Very little is still known about the spectra of urban materials. Considerably more research has focused on 
natural materials such as plants, rocks and minerals. It is possible, given more research that comprehensive 
libraries will be developed, increasing our ability to map specific materials based on diagnostic absorptions. 
In the absence of more detailed knowledge of urban spectrometry, however, imaging spectrometers have 
been shown to provide improved discrimination and land-cover mapping (e.g. Herold et al. 2003). 
Fundamentally, multispectral systems are limited spectrally and must rely to a greater extent on spatial 
patterns to map land-cover. Using an approach such as MESMA, the potential exists for mapping hundreds 
of distinct materials by allowing the number and types of endmembers to vary on a per pixel basis. 
Whereas many materials are likely to remain problematic (i.e. asphalt roads and composite shingle), others 
can be readily discriminated based on their spectra. 
Techniques such as MTMF (Boardman et al. 1995), could potentially be employed to produce detailed 
maps of materials below the resolution of the GIFOV. The ability to locate a material will depend to a 
considerable extent on the spectral contrast of the material relative to its surrounding background. In other 
words, it may be possible to extend our ability to map a material well below the GIFOV of the instrument 
given a sufficient amount of spectral leverage. Tradeoffs between spatial and spectral resolution have yet to 
be established for an urban landscape. Experience from mineral mapping suggests that such an approach 
should be fruitful, given greater knowledge of the spectra of urban materials.  
 

NOVEL APPROACHES 

Examples from AVIRIS acquired in the Santa Barbara area 
As part of several projects designed to evaluate the potential of hyperspectral data for mapping 
transportation infrastructure and roof materials, University of California Santa Barbara (UCSB) built an 
urban spectral library for the Goleta/Santa Barbara area. A total of 6,500 spectra were acquired between 
late May and early June, 2001 using an ASD full range instrument on loan from the Jet Propulsion 
Laboratory (Fig. 3). Once averaged and converted to reflectance, these spectra included 499 roofs, 179 
roads, 66 side walks, 56 parking lots 40 road paints, 37 vegetation, 47 types of non-photosynthetic 
vegetation (i.e., landscaping bark), 88 bare soil and beach spectra, 27 acquired from tennis courts and 50 
more from miscellaneous surfaces. 
 
One major research question we are addressing is the feasibility of imaging spectrometers for mapping the 
large spectral diversity of urban materials within a highly mixed urban environment. Because unique 
spectral features are present in red tile and wood shingle, these materials should be relatively easy to map 
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(Fig. 5a, b).  However, spectral similarities between other materials, such as composite shingle and asphalt 
surfaces (due to similar material composition) suggest significant confusion is likely to occur (Fig.5).  
To quantify spectral separability of materials, we employed the Bhattacharyya distance (B-distance) as a 
measure of spectral separability (Jimenez and Landgrebe, 1999). The B-distance is calculated using Eq.1:  
 

 
 

where µi and ? i are the mean vector and the covariance matrix of classes one and two, 
respectively. This separability metric was developed to measure the statistical distance 
between two Gaussian distributions (Kailath, 1967) and incorporates both first order and second 
order statistics, in which the first half of Equation 1 incorporates differences in means, and the second part 
incorporates covariance (Landgrebe, 2000). Because the B-distance only provides relative measures of 
separability, it cannot be used to establish absolute thresholds. Low B-distances imply relatively lower 
separability. 
  
Table 2 shows that the lowest B-distance values occurred between specific types of roofs and roads. These 
spectral similarities are due to generic material properties and are responsible for lower accuracies reported 
by Herold et al. (2003). In fact, spectral confusion between individual roofs and roads is higher than for 
different road surface types. Concrete roads and to some extent asphalt roads have fairly high average and 
low minimum separation. This indicates a large within class variability and emphasizes the spectral 
complexity of transportation surfaces compared to other urban land cover types. 
 

Table 2) Matrix of B-distance values for minimum and average separability between different manmade 
land cover types. 

 
The B-distance can be used to design an optimal subset of spectra for mapping discriminating urban 
materials. Figure 10 shows spectra of nine materials and the wavelength location of 14 bands which best 
discriminate them. Landsat TM bands are shown in grey, illustrating that several important wavelength 
regions are not sampled by the Landsat system. 

 
1:  

Com_sh 
2:  

Grav_rf 
3:  

Tar_rf 
4:  

Gr_tile 
5:  

Rd_tile 
6:  

Wd_sh 
7:  

Asp_rd 
8:  

Concr 
9:  

Grav_rd 10: P_lot  

1: Composite shingle   56 19 14 75 61 8 18 106 13 

2: Gravel roof 405  36 46 109 189 51 17 88 84 

3: Tar roof 190 599  30 69 127 17 20 135 26 

4: Gray tile roof 92 178 67  34 32 35 16 61 31 

5: Red tile roof 549 581 559 375  84 90 52 147 130 

6: Wood shingle roof 315 359 171 172 197  218 31 152 249 

7: Asphalt road 244 693 119 99 1331 351  28 68 7 

8: Concrete road 687 735 1325 423 1247 977 1151  29 11 

9: Gravel road 2533 2514 1733 2460 927 4370 3047 1799  117 

10: Parking lot 194 700 98 81 1499 436 194 897 3832  

Coding of values: Bold: Average separability (lower left part of matrix)  
Italic: Minimum separability (upper right part of matrix) 

Gray background: Average value ≤ 150 / Minimum value ≤ 20 



 24 

 
 

Figure 10) Most suitable spectral bands (vertical lines) for urban mapping derived from the ASD spectral 
library and the AVIRIS data compared to spectral signatures of several urban land cover types and the 

spectral coverage of LANDSAT TM satellite sensor (gray in the background). 
 
Based on this analysis, the most suitable bands for urban mapping appear in nearly all parts of the spectrum 
with a fair number in the visible region (Fig. 10). This indicates that narrow spectral bands (~ 20 nm wide) 
are important in resolving small-scale spectral contrast (e.g. color, iron absorption features) among 
materials and land cover types in this spectral region. Several additional bands appear in the SWIR, some 
of which are associated with specific absorption features (e.g. clays) while others are responsive to large 
reflectance differences between materials, such as the high reflectance of red tile beyond 1000 nm. 
 
Based on spectra of urban materials and the B-distance, we would expect some materials, such as wood 
shingle roofs, to be readily mapped by a sensor such as AVIRIS at very high accuracies. In contrast, we 
would anticipate considerable confusion between some types of roofs (mostly composite shingle) and 
asphalt roads. In order to test this, we employed a matched filter in the Environment for Visualizing Images 
(ENVI) software package to high spatial resolution AVIRIS data acquired over Goleta, California (Fig. 11). 
Figure 11a shows the matched filter scores for wood shingle roof; Figure 11b shows the asphalt road and 
Figure 11c shows a spatially georectified map of known roads and wood shingle roofs. Comparison of 
these three figures demonstrates that wood shingle roofs could be mapped at very high accuracies, 
producing high matched filter scores in virtually all areas mapped as wood shingle. The most significant 
false positives appear to be open fields consisting of senesced grass. In contrast, the matched filter for 
asphalt road shows considerable error. In Figure 11b, the matched filter correctly maps most road surfaces, 
but also maps large areas of dark composite shingle. One approach for reducing spectral confusion between 
these two material types would be to incorporate a third dimension into the analysis. For example, if 
LIDAR or IFSAR were used to map the height of surfaces, confusion between roads and roofs would be 
greatly reduced.  
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Figure 11) Results of matched filter analysis for wood shingle roofs (a) and asphalt roads (b) compared to 
reference data (c) for wood shingle roofs and asphalt roads. 

 
Examples from the World Trade center 
Imaging spectrometry has considerable potential to help in emergency disaster response. Potential 
applications of an imaging spectrometer included mapping thermal sources and environmental 
contaminants. Following the World Trade Center Disaster of September 11, 2001, AVIRIS was deployed 
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on a Twin Otter and flown to the area. A particular concern was the potential of widespread dissemination 
of potentially cancer causing asbestiform dusts. However, other dusts originating from crushed urban 
materials are also of concern due to their potential to produce respiratory problems. 

 
Figure 12) Spectra of World Trade Center dust with variable amounts of chrysotile asbestos. Outer edges of 

chrysostile absorption bands are marked by arrows. From Clark et al. (2001). 
 
AVIRIS imaged the World Trade Center and its vicinity four times between September 15 and 23, 2001. 
Because of time constraints for emergency relief efforts, the data were radiometrically calibrated, 
georectified and corrected to surface reflectance as quickly as possible after image data were acquired, then 
analyzed using Tetracorder at the United States Geological Survey (USGS). For example, data acquired on 
September 16th were shipped to the USGS by September 17th and fully analyzed between September 17th 
and 19th using real-time feedback from field crews. Examples shown here are derived from an Open File 
Report published by the USGS (Clark et al. 2001). The reader is encouraged to read the full report.  

 
Figure 13) Serpentine and amphibole mineral map in the vicinity of the World Trade Center, generated by 

Clark et al. (2001) using Tetracorder. A lack of color is indicative of low concentration of chrysotile or 
amphibole asbestos. 
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Figure 14) Spectra of various dusts and building materials. From Clark et al. (2001). 
 

Researchers from the USGS collected spectra from 33 dust samples acquired in the vicinity of the two 
towers between September 17 and 19th, 2001. Figure 12 shows a spectral subset of several dusts determined 
to have variable amounts of chrysotile asbestos. Tetracorder was applied to high spatial resolution AVIRIS 
data to determine the extent of asbestiform dust contamination (Fig. 13). The lack of color in this figure 
suggests that contamination levels remained low, although there is some evident of east-west spread of 
chrysotile dust (Clark et al. 2001).  

 
Figure 15) Dust/debris plume map in the vicinity of the World Trade Center, generated by Clark et al. 

(2001) using Tetracorder. 



 28 

Crushed building materials represent a potentially large source of exotic dust. Figure 14 shows a selection 
of spectra, published by Clark et al. (2001) showing cements, gypsum wall board, concretes and dusts 
collected from the World Trade Center. These spectra were used as reference spectra for Tetracorder and 
used to map different dust types disseminated throughout the areas (Fig. 15).  

 
Maps such as these have considerable potential in aiding relief efforts. The extremely rapidity that these 
data were acquired, processed and analyzed to make maps offers a glimpse of some of the potential of 
imaging spectrometry for rapid urban disaster response. 
 

SUMMARY 
 
Urban areas represent the hub of human activities, where most human commerce and population is 
concentrated. Remote sensing is currently undergoing a renaissance in these areas, in large part due to the 
availability of sensors that provide unprecedented spatial and spectral detail. Urban areas are particularly 
challenging for remote sensing because of the requirement of fine spatial resolution (~5 m), the high 
diversity of materials, complex lighting geometries (and bidirectional reflectance properties of many 
surfaces) and potentially variable atmospheric properties due to airborne pollutants. Airborne imaging 
spectrometers, by sampling a large number of wavelengths at fine spatial resolution are uniquely qualified 
to map urban materials at high accuracies. 
 
In this chapter we provide a brief overview of some important aspects of urban imaging spectrometry. We 
provide a brief introduction documenting some recent applications of imaging spectrometry in urban areas. 
We follow with a discussion of important radiometric and spectral concepts, with a focus on how they 
apply to urban areas. We discuss instrumentation, with a focus on field instruments and sampling 
procedures. We also discuss airborne platforms, focusing primarily on sensors that have recently been used 
to map urban land cover. Airborne sensors are particularly important because they offer the potential of 
developing a comprehensive spectral library at relatively low cost at an appropriate spatial resolution. We 
illustrate important aspects of urban spectra using field spectra measured in the Santa Barbara area. We 
include spectra of roofs of varying materials and conditions, transportation surfaces (roads, sidewalks) and 
street paints. Next, we discuss analysis techniques, starting with preprocessing (including reflectance 
retrieval and georectification), followed by a subset methods used to identify materials. Although a large 
diversity of analysis techniques exist, we present only those that have been recently applied to imaging 
spectrometry of urban areas. We conclude the chapter with several examples of applications, including the 
development of a spectral library for the Santa Barbara area and the use of imaging spectrometry to map 
environmental contaminants at the World Trade Center. Imaging spectrometry is a rapidly evolving field in 
which new sensors and new analysis methods are continually being developed. Urban remote sensing 
represents a relatively new, but exciting application for this technology. The combination of technologies, 
such as LIDAR, which can provide a vertical description of a landscape, and imaging spectrometry, which 
provides improved spectral discrimination, is particularly powerful.  
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