Geo-instrumentation and fieldwork equipment

Laboratory of Geo-information Science and Remote Sensing Wageningen University and Research

Version 0.1

Contact: Lammert Kooistra, Harm Bartholomeus and Marcelo Novani

Background

As sensing and measuring is one of the important research themes of the Laboratory of Geoinformation Science and Remote Sensing (GRS) of Wageningen University, we have build-up quit a large instrumentation pool over the past years. These instruments are intensively used for research but also for educational activities (demonstration and fieldwork). On the GRS website several webpages are dedicated to providing an overview and background of the instruments. This document brings all these separate sources of information together.

The purpose of this document is:

- To provide students and researchers an overview of instruments available within GRS; •
- To use as a basis for management of the different instruments; •

The document will be be synchronized with the relevant websites.

Overview of GRS facilities

Within GRS the following instrument facilities have been set-up:

- Land-survey and GNSS instrumentation, and geo-sensors
- Spectroscopy and goniometer facility
- WU terrestrial Laser Scanning Facility
- Unmanned Aerial Remote Sensing Facility (UARSF)
- Map table and (3D) visualization instruments

In the next sections, an overview is given of the instruments per facility, links to instrument descriptions are provided and if available links to manuals and working instructions.

Land-survey and GNSS instrumentation, and geo-sensors

Contact: Aldo Bergsma and Marcello Novani

The basic data which need to be acquired by geo-information scientists are the coordinates of the objects of interest. Global Navigation Satellite Systems (e.g., GPS) provides the technology to measure coordinates across the earth system. However, also more traditional land surveying instruments are still in use to acquire spatial data. In addition, specific characteristics of the soil-plant-water-atmosphere system are measured with geo-sensors.

Instrument	Reference to background	Manual or instruction
GNSS instruments		
Topcon HIPER V: RTK precision	Company description	Link to manual
within 1 cm (2 instruments)		
Garmin etrex 30: handheld	Company description	Link to manual
GNSS 5-10 m (25 instruments)		
Xexun TK102-2 GPS trackers		
Bluetooth GPS (5-10 m)		
Leica GNSS RTK (cm. accuracy)		
Survey instruments		
Leica Robotic Totalstation (cm		
accuracy)		
Swarowski Distance Laser		
guide Long range		
Leica Distomat D5 short range		
Pentaprism		
Ranging rod		
Rulers 2, 5, 10, 30, 50 m		
Inclinometer: Wild,		
Breithaupt Suunto Leiss		
Leveling		
instruments (Automatic and		
KIP) Nikon, Wild, Breithaupt		
etc.		
Geo-sensors ¹		
Wind speed meters		
Thermo meter Taylor 2 sensors		
adjustable interval , long time		
storage		
Thermo meter Rayngr IR-		
distance		
NEC Thermotracer TH9100		
Thermal camera		

Table 1: Overview of GNSS, land-survey and geo-sensor instruments

1: for RS and GIS Integration course (GRS60312): other ESG chairgroups could have instruments which could be of relevance for the fieldwork activities: in earlier years instruments measuring water quality, animal movement camera (REG), underwater sonar, ...

Spectroscopy and goniometer facility

Contact: Harm Bartholomeus and Lammert Kooistra

To support remote sensing research and education high-quality spectral measurements are critical for calibration and validation of images acquired from satellite or (unmanned) airborne platforms. At GRS a broad range of instruments is available to support this activity.

Instrument	Reference to background	Manual or instruction
Field spectrometers		
ASD Fieldspec 3: 350-2500 nm;	Company description	Link to manual
calibration with reference panel	company description	
ASD Fieldspec Pro FR: 350-2500	Company description	Link to manual
nm; calibration with reference		
panel		
ASD Fieldspec JR: 350-2500 nm;	Company description	Link to manual
calibration with reference panel	company accomption	
ASD Fieldspec HH: wavelength	Company description	Link to manual
range of 325 nm – 1075 nm;		
calibration with reference panel		
Peripherals for ASD	Company description	
instruments: Integrating	1	
Sphere, Contact Probe,		
Foreoptics, lamps		
Cropscan (16 bands): upward	Company description	Link to manual
and downward facing sensors to		
measure both incoming and		
reflected radiation		
Dualspec: 400-900 nm; 3 nm	Custom made	Manual available on request
resolution; upward and		
downward facing sensors		
Fluorspec: 650-780 nm; 0.3nm	Custom made	Manual available on request
resolution, specifically designed		
to measure fluorescence signal		
Robot based Goniometer	Article describing the system	Currently not in operation:
system (Plantfacility)		contact Jan Clevers
Spectroscopic plant trait		
instruments		
Licor LAI2000: Leaf Area Index	Company description and	Link to short manual
of vegetation canopies	brochure new version	Link to complete manual
Minolta SPAD: chlorophyll	Company description	Link to manual
concentration of leaf		
Hemispherical camera: Leaf	General description of	
Area Index, canopy cover,	measurement principle	
clumping index of vegetation		
canopies (including forest)		

Table 2: Overview of field spectroscopy instruments

Terrestrial Laser Scanning Facility

Terrestrial LiDAR (Light Detection and Ranging) is a ground-based remote sensing technique that can retrieve the 3D structure of objects on the earth surface in high detail. Within GRS this especially adopted for mapping and monitoring vegetation: forest and crops.

Contact: Harm Bartholomeus

Table 5. Overview of laser scallin		I
Instrument	Reference to background	Manual or instruction
RIEGL VZ-400 laser scanner	Company description	Manual available on request:
materials mentioned below		contact Harm Bartholomeus
are add-ons to this system		
Scanner mount for manual tilt		
(adjustable in steps of 15° up		
to 90°)		
Integrated digital compass and		
GPS antenna Full waveform		
(FWF) readout		
NIKON D700 digital camera on		
high precision camera mount		
(NIKKOR 14/2.8 lens and		
NIKKOR 85/1.8 lens		
Zebedee: handheld 3D	Company description: link	Manual available on request:
mapping system	provides also example	contact Harm Bartholomeus
	applications	
RIEGL Unmanned Laser	Company description	Manual available on request:
Scanning Ricopter: VUX-SYS	Ricopter@WUR	contact Harm Bartholomeus
scanner	Seminar Drones for research –	
	observing the world in 3D from	
	a Lidar-UAV + movie	
Trimble V10 Imaging Rover:	Company description	Owned by Wageningen
integrated camera system that		Environmental Research:
precisely captures 360-degree		contact Henk Kramer
digital panoramas		

Table 3: Overview of laser scanning instruments

Unmanned Aerial Remote Sensing Facility

Contact: Lammert Kooistra and Harm Bartholomeus

To support environmental management there is increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Vehicles (UAV) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAV technology is maturing quickly while the flexible capabilities of a UAV fill a gap between satellite based and ground based geo-sensing systems. At GRS, we have established a significant instrument pool for UAV based research in cooperation with the team Earth Informatics of Wageningen Environmental Research, and the department of Soil Physics and Land Management (SLM) of Wageningen University. The UAVs of the UARSF can only be flown by certified pilots.

Table 4: Overview of OAV platfol		
Instrument	Reference to background	Manual or instruction
Unmanned Aerial Vehicles		
DJI Phantom 3: light-weight	Company description	
UAV with RGB camera + video		
Altura AT8: Octocopter carries	Some details of the UAV are	Operation Manual available on
up to 2 kg flying 10 minutes	described in Suomalainen et al.	request: contact Lammert
and can carry different	2014	Kooistra
camera's (see below)		
DJI S1000: Octocopter carries	Company description	Operation Manual available on
up to 3.5 kg flying 10 minutes		request: contact Lammert
and can carry different		Kooistra
camera's (see below)		
RIEGL Unmanned Laser	Company description	Manual available on request:
Scanning Ricopter: fixed VUX-	Ricopter@WUR	contact Harm Bartholomeus
SYS scanner + RGB camera's:	Seminar Drones for research –	
flight time 20-30 minutes	observing the world in 3D from	
	a Lidar-UAV + movie	
Mavinci Sirius: fixed wing UAV	Company description	
(operated by SLM): payload		
600 gram, flight time 30-40		
minutes		
Camera's		
MUMSY: multispectral		Processing manual available on
mapping system: 2 NIKON		request: contact Lammert
camera's with 4-band RGB-NIR		Kooistra
HYMSY: hyperspectral	Details of the camera are	Processing manual available on
mapping system, push-broom:	described in Suomalainen et al.	request: contact Lammert
450-950 nm with 100 spectral	2014	Kooistra
bands		
Rikola: hyperspectral frame	Company description	Processing manual available on
camera: 111 spectral bands in	Details of the camera are	request: contact Lammert
range from 450-950 nm; in	described in Roosjen et al.	Kooistra
most cases flown with 20-30	2017	
programmable bands		

Table 4: Overview of UAV platforms and camera's

Fluorspec : 650-780 nm; 0.3nm resolution, specifically designed to measure fluorescence signal	Custom made	Manual available on request
Workswell WIRIS: thermal	Company description	Processing chain under
camera		development

Map table and (3D) visualization instruments

Contact: Ron van Lammeren and Aldo Bergsma

In many multi- and transdisciplinary studies the role of maps as medium to communicate and participate is of great importance. The exchange of information by maps ranges from mass media by newspapers, television and websites to very individual by sketch paper and tablet. The exchange of information by maps in small groups (2 up to 6 persons) can be supported more efficiently and effectively supported by the use of Map Tables. But also new technology like the Microsoft Hololens is currently tested.

Table : Overview of instruments

Reference to background	Manual or instruction
Short description	The Map Table can be used for group work during courses. Lecturers and students currently have no support.
Microsoft HoloLens Development Edition: short description	Currently in development
	Short description Microsoft HoloLens Development Edition: short